Algèbre des descentes et cogroupes dans les algèbres sur une opérade

Benoît Fresse

Bulletin de la Société Mathématique de France (1998)

  • Volume: 126, Issue: 3, page 407-433
  • ISSN: 0037-9484

How to cite

top

Fresse, Benoît. "Algèbre des descentes et cogroupes dans les algèbres sur une opérade." Bulletin de la Société Mathématique de France 126.3 (1998): 407-433. <http://eudml.org/doc/87789>.

@article{Fresse1998,
author = {Fresse, Benoît},
journal = {Bulletin de la Société Mathématique de France},
keywords = {cogroup; Solomon's descent algebra; operad},
language = {fre},
number = {3},
pages = {407-433},
publisher = {Société mathématique de France},
title = {Algèbre des descentes et cogroupes dans les algèbres sur une opérade},
url = {http://eudml.org/doc/87789},
volume = {126},
year = {1998},
}

TY - JOUR
AU - Fresse, Benoît
TI - Algèbre des descentes et cogroupes dans les algèbres sur une opérade
JO - Bulletin de la Société Mathématique de France
PY - 1998
PB - Société mathématique de France
VL - 126
IS - 3
SP - 407
EP - 433
LA - fre
KW - cogroup; Solomon's descent algebra; operad
UR - http://eudml.org/doc/87789
ER -

References

top
  1. [1] DRINFEL'D (V.G.). — Quantum groups, in “Proceedings International Congress in Mathematics”, Berkeley, 1986 p. 798-820. Zbl0667.16003MR89f:17017
  2. [2] FRESSE (B.). — Cogroups in algebras over an operad are free algebras, Comment. Math. Helv., à paraître. Zbl0929.16033
  3. [3] FRESSE (B.). — Lie theory of formal groups over an operad, J. Algebra, t. 202, 1998, p. 455-511. Zbl1041.18009MR99c:14063
  4. [4] GARSIA (A.M.), REUTENAUER (C.). — A decomposition of Solomon's descent algebra, Adv. Math., t. 77, 1989, p. 189-262. Zbl0716.20006MR91c:20007
  5. [5] GETZLER (E.), JONES (J.D.S.). — Operads, homotopy algebra and iterated integrals for double loop spaces, prépublication, 1994. 
  6. [6] GERSTENHABER (M.), SCHACK (S.D.). — A Hodge-type decomposition for commutative algebra cohomology, J. Pure Appl. Algebra, t. 48, 1987, p. 229-247. Zbl0671.13007MR88k:13011
  7. [7] GERSTENHABER (M.), SCHACK (S.D.). — The shuffle bialgebra and the cohomology of commutative algebras, J. Pure Appl. Algebra, t. 70, 1991, p. 263-272. Zbl0728.13003MR92e:13008
  8. [8] GINZBURG (V.), KAPRANOV (M.M.). — Koszul duality for operads, Duke Math. J., t. 76, 1995, p. 203-272. Zbl0855.18006MR96a:18004
  9. [9] LODAY (J.-L.). — La renaissance des opérades, in “Séminaire Bourbaki, 1994-1995”, Astérisque, t. 237, 1996, p. 47-74. Zbl0866.18007MR98b:18010
  10. [10] LODAY (J.-L.). — Série de Hausdorff, idempotents Euleriens et algèbres de Hopf, Expo. Math., t. 12, 1994, p. 165-178. Zbl0807.17003MR95a:20015
  11. [11] LODAY (J.-L.). — Opérations sur l'homologie cyclique des algèbres commutatives, Invent. Math., t. 96, 1989, p. 205-230. Zbl0686.18006MR89m:18017
  12. [12] LODAY (J.-L.). — Cyclic homology, Grundlehren der Math. Wissenschaften, Springer-Verlag, t. 301, 1992. Zbl0780.18009MR94a:19004
  13. [13] MAY (J.P.). — The geometry of iterated loop spaces, Lecture Notes in Math., Springer-Verlag, t. 271, 1972. Zbl0244.55009MR54 #8623b
  14. [14] MILNOR (J.W.), MOORE (J.C.). — On the structure of Hopf algebras, Ann. Math., t. 81, 1965, p. 211-264. Zbl0163.28202MR30 #4259
  15. [15] OUDOM (J.-M.). — Coproduct and cogroups in the category of graded dual Leibniz algebras, in “Operads : Proceedings of renaissance conferences, 1995”, Contemp. Math., t. 202, 1997, p. 115-135. Zbl0880.17002MR98c:17003
  16. [16] PATRAS (F.). — L'algèbre des descentes d'une bigèbre graduée, J. Algebra, t. 170, 1994, p. 547-566. Zbl0819.16033MR96a:16043
  17. [17] PATRAS (F.). — La décomposition en poids des algèbres de Hopf, Ann. Inst. Fourier, t. 43, 1993, p. 1067-1087. Zbl0795.16028MR95d:16054
  18. [18] PATRAS (F.). — Construction géométrique des idempotents eulériens. Filtration des groupes de polytopes et des groupes d'homologie de Hochschild, Bull. Soc. Math. Fr., t. 119, 1991, p. 173-198. Zbl0752.55014MR92i:19005
  19. [19] QUILLEN (D.). — Rational homotopy theory, Ann. of Math., t. 90, 1969, p. 205-295. Zbl0191.53702MR41 #2678
  20. [20] REUTENAUER (C.). — Free Lie Algebras, London Math. Soc. Mon., Clarendon Press, t. 7, 1993. Zbl0798.17001MR94j:17002
  21. [21] SOLOMON (L.). — A decomposition of the group algebra of a finite Coxeter group, J. Algebra, t. 9, 1968, p. 220-239. Zbl0186.04503MR38 #1191

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.