Théorie des opérades de Koszul et homologie des algèbres de Poisson

Benoit Fresse[1]

  • [1] Laboratoire Painlevé Université de Lille 1 et CNRS Cité Scientifique – Bâtiment M2 F-59655 Villeneuve d’Ascq Cedex France

Annales mathématiques Blaise Pascal (2006)

  • Volume: 13, Issue: 2, page 237-312
  • ISSN: 1259-1734

How to cite

top

Fresse, Benoit. "Théorie des opérades de Koszul et homologie des algèbres de Poisson." Annales mathématiques Blaise Pascal 13.2 (2006): 237-312. <http://eudml.org/doc/10532>.

@article{Fresse2006,
affiliation = {Laboratoire Painlevé Université de Lille 1 et CNRS Cité Scientifique – Bâtiment M2 F-59655 Villeneuve d’Ascq Cedex France},
author = {Fresse, Benoit},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Poisson algebra; Koszul operad},
language = {fre},
month = {7},
number = {2},
pages = {237-312},
publisher = {Annales mathématiques Blaise Pascal},
title = {Théorie des opérades de Koszul et homologie des algèbres de Poisson},
url = {http://eudml.org/doc/10532},
volume = {13},
year = {2006},
}

TY - JOUR
AU - Fresse, Benoit
TI - Théorie des opérades de Koszul et homologie des algèbres de Poisson
JO - Annales mathématiques Blaise Pascal
DA - 2006/7//
PB - Annales mathématiques Blaise Pascal
VL - 13
IS - 2
SP - 237
EP - 312
LA - fre
KW - Poisson algebra; Koszul operad
UR - http://eudml.org/doc/10532
ER -

References

top
  1. J. Alev, T. Lambre, Comparaison de l’homologie de Hochschild et de l’homologie de Poisson pour une déformation des surfaces de Klein, Algebra and operator theory (1998), 25-38, Kluwer Acad. Publ. Zbl0931.16007MR1643407
  2. D. Balavoine, Homology and cohomology with coefficicients of an algebra over a quadratic operad, J. Pure Appl. Algebra 132 (1998), 221-258 Zbl0967.18004MR1642086
  3. C. Berger, I. Moerdijk, Axiomatic homotopy theory for operads, Comment. Math. Helv. 78 (2003), 805-831 Zbl1041.18011MR2016697
  4. J. Braconnier, Algèbres de Poisson, C. R. Acad. Sci. Paris Sér. A Math. 284 (1977), 1345-1348 Zbl0356.17007MR443000
  5. J.-L. Brylinski, A differential complex for Poisson manifolds, J. Diff. Geometry. 28 (1988), 93-114 Zbl0634.58029MR950556
  6. D. Burghelea, M. Vigué-Poirrier, Cyclic homology of commutative algebras, 1318 (1988), 51-72, Springer-Verlag Zbl0666.13007MR952571
  7. K. T. Chen, Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula, Ann. Math. 65 (1957), 163-178 Zbl0077.25301MR85251
  8. K. T. Chen, Iterated path integral, Bull. Amer. Math. Soc. 83 (1977), 831-879 Zbl0389.58001MR454968
  9. V. G. Drinfeld, Quantum groups, Proc. Int. Congr. Math. (1987), 798-820 Zbl0667.16003MR934283
  10. V. G. Drinfeld, On some unsolved problems in quantum group theory, Quantum groups 1510 (1992), 1-8, Springer-Verlag Zbl0765.17014MR1183474
  11. T. Fox, M. Markl, Distributive laws, bialgebras, and cohomology, Operads : Proceedings of renaissance conferences 202 (1997), 167-205 Zbl0866.18008MR1436921
  12. B. Fresse, Algèbre des descentes et cogroupes dans les algèbres sur une opérade, Bull. Soc. Math. Fr. 126 (1998), 407-433 Zbl0940.18004MR1682797
  13. B. Fresse, Homologie de Quillen pour les algèbres de Poisson, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), 1053-1058 Zbl0922.17014MR1647186
  14. B. Fresse, Structures de Poisson sur une intersection complète à singularitées isolées, C. R. Acad. Sci. Paris Sér. I Math. 335 (2002), 5-10 Zbl1095.13525MR1920425
  15. B. Fresse, Koszul duality of operads and homology of partition posets, Homotopy theory and its applications 346 (2004), 115-215 Zbl1077.18007MR2066499
  16. I. M. Gelfand, I. Y. Dorfman, Hamiltonian operators and the classical Yang-Baxter equation, Funkts. Anal. Prilozh. 16 (1982), 1-9 Zbl0527.58018MR684122
  17. M. Gerstenhaber, S. D. Schack, A Hodge-type decomposition for commutative algebra cohomology, J. Pure Appl. Algebra 48 (1987), 229-247 Zbl0671.13007MR917209
  18. M. Gerstenhaber, S. D. Schack, The shuffle bialgebra and the cohomology of commutative algebras, J. Pure Appl. Algebra 70 (1991), 263-272 Zbl0728.13003MR1104844
  19. E. Getzler, J. Jones, Operads, homotopy algebra and iterated integrals for double loop spaces, (1994) 
  20. G. Ginot, Homologie et modèle minimal des algèbres de Gerstenhaber, Ann. Math. Blaise Pascal 11 (2004), 95-127 Zbl1139.16301MR2077240
  21. V. Ginzburg, D. Kaledin, Poisson deformations of symplectic quotient singularities, Adv. Math. 186 (2004), 1-57 Zbl1062.53074MR2065506
  22. V. Ginzburg, M. Kapranov, Koszul duality for operads, Duke Math. J. 76 (1995), 203-272 Zbl0855.18006MR1301191
  23. R. Hain, On the indecomposable elements of the bar construction, Proc. Amer. Math. Soc. 98 (1986), 312-316 Zbl0613.55007MR854039
  24. J. Huebschmann, Poisson cohomology and quantization, J. Reine Angew. Math. 408 (1990), 57-113 Zbl0699.53037MR1058984
  25. C. Kassel, L’homologie cyclique des algèbres enveloppantes, Invent. Math. 91 (1988), 221-251 Zbl0653.17007MR922799
  26. M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), 157-216 Zbl1058.53065MR2062626
  27. J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, Elie Cartan et les mathématiques d’aujourd’hui (1985), 257-271 Zbl0615.58029MR837203
  28. I. S. Krasilshschik, Hamiltonian cohomology of canonical algebras, Dokl. Akad. Nauk. 251 (1980), 1306-1309 Zbl0454.58020MR570152
  29. A. Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées, J. Diff. Geometry 12 (1977), 253-300 Zbl0405.53024MR501133
  30. M. Livernet, Homotopie rationnelle des algèbres sur une opérade, (1998), Strasbourg MR1695322
  31. J.-L. Loday, Opérations sur l’homologie cyclique des algèbres commutatives, Invent. Math. 96 (1989), 205-230 Zbl0686.18006MR981743
  32. J.-L. Loday, Cyclic homology, 301 (1992), Springer-Verlag Zbl0780.18009MR1217970
  33. J.-L. Loday, Série de Hausdorff, idempotents Euleriens et algèbres de Hopf, Exposition. Math. 12 (1994), 165-178 Zbl0807.17003MR1274784
  34. S. Mac Lane, Homology, 114 (1963), Springer-Verlag MR1344215
  35. M. Markl, Distributive laws and Koszulness, Ann. Inst. Fourier 46 (1996), 307-323 Zbl0853.18005MR1393517
  36. M. Markl, S. Shnider, J. Stasheff, Operads in algebra, topology and physics, 96 (2002), American Mathematical Society Zbl1017.18001MR1898414
  37. S.-Q. Oh, Poisson enveloping algebras, Comm. Algebra 27 (1999), 2181-2186 Zbl0936.16020MR1683858
  38. F. Patras, Construction géométrique des idempotents Euleriens. Filtration des groupes de polytopes et des groupes d’homologie de Hochschild, Bull. Soc. Math. Fr. 119 (1991), 173-198 Zbl0752.55014MR1116844
  39. F. Patras, L’algèbre des descentes d’une bigèbre graduée, J. Algebra 170 (1994), 547-566 Zbl0819.16033MR1302855
  40. T. Pirashvili, Hodge decomposition for higher Hochschild homology, Ann. Sci. École Norm. Sup. 33 (2000), 151-179 Zbl0957.18004MR1755114
  41. D. Quillen, Homotopical algebra, 43 (1967), Springer-Verlag Zbl0168.20903MR223432
  42. D. Quillen, Rational homotopy theory, Ann. of Math. 90 (1969), 205-295 Zbl0191.53702MR258031
  43. D. Quillen, On the (co)-homology of commutative rings, 17 (1970), 65-87, Amer. Math. Soc. Zbl0234.18010MR257068
  44. C. Reutenauer, Theorem of Poincaré-Birkhoff-Witt, logarithm and symmetric group representations of degrees equal to Stirling numbers, Combinatoire énumérative 1234 (1986), 267-284, Springer-Verlag Zbl0621.20004MR927769
  45. C. Reutenauer, Free Lie Algebras, 7 (1993), Clarendon Press Zbl0798.17001MR1231799
  46. G. Rinehart, Differential forms on general commutative algebras, Trans. Amer. Math. Soc. 108 (1963), 195-222 Zbl0113.26204MR154906
  47. M. Schlessinger, J. Stasheff, The Lie algebra structure of tangent cohomology and deformation theory, J. Pure Appl. Algebra 38 (1985), 313-322 Zbl0576.17008MR814187
  48. D. Tamarkin, Another proof of M. Kontsevich formality theorem, (1998) 
  49. I. Vaisman, Lectures on the geometry of Poisson manifolds, 118 (1994), Birkhäuser Zbl0810.53019MR1269545
  50. M. Vigué-Poirrier, Cyclic homology of algebraic hypersurfaces, J. Pure Appl. Algebra 72 (1991), 95-108 Zbl0732.16008MR1115570
  51. M. Vigué-Poirrier, Décompositions de l’homologie cyclique des algèbres différentielles graduées commutatives, K-theory 4 (1991), 255-267 Zbl0731.19004MR1116926

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.