Théorèmes d'annulation générique pour les fibrés vectoriels semi-négatifs

Christophe Mourougane

Bulletin de la Société Mathématique de France (1999)

  • Volume: 127, Issue: 1, page 115-133
  • ISSN: 0037-9484

How to cite

top

Mourougane, Christophe. "Théorèmes d'annulation générique pour les fibrés vectoriels semi-négatifs." Bulletin de la Société Mathématique de France 127.1 (1999): 115-133. <http://eudml.org/doc/87797>.

@article{Mourougane1999,
author = {Mourougane, Christophe},
journal = {Bulletin de la Société Mathématique de France},
keywords = {vanishing theorems; transcendental methods; positivity notions; Kähler manifolds},
language = {fre},
number = {1},
pages = {115-133},
publisher = {Société mathématique de France},
title = {Théorèmes d'annulation générique pour les fibrés vectoriels semi-négatifs},
url = {http://eudml.org/doc/87797},
volume = {127},
year = {1999},
}

TY - JOUR
AU - Mourougane, Christophe
TI - Théorèmes d'annulation générique pour les fibrés vectoriels semi-négatifs
JO - Bulletin de la Société Mathématique de France
PY - 1999
PB - Société mathématique de France
VL - 127
IS - 1
SP - 115
EP - 133
LA - fre
KW - vanishing theorems; transcendental methods; positivity notions; Kähler manifolds
UR - http://eudml.org/doc/87797
ER -

References

top
  1. [CS93]CUTKOSKY (S.D.), SRINIVAS (V.). — On a problem of Zariski on dimensions of linear systems, Annals of Math., t. 137, 1993, p. 531-559. Zbl0822.14006MR94g:14001
  2. [DGMS75]DELIGNE (P.), GRIFFITHS (P.A.), MORGAN (J.), SULLIVAN (D.). — Real Homotopy Theory of Kähler Manifolds, Invent. Math., t. 29, 1975, p. 245-274. Zbl0312.55011MR52 #3584
  3. [DS80]DEMAILLY (J.P.), SKODA (H.). — Relations entre les notions de positivité de P.A. Griffiths et de S. Nakano, Séminaire P. Lelong et H. Skoda, 1978-1979, Lecture Notes in Math., t. 822, 1980, p. 304-309. Zbl0454.55011MR82h:32028
  4. [En93]ENOKI (I.). — Kawamata-Viehweg vanishing for compact Kähler manifolds, Einstein metric and Yang-mills connections, T. Mabuchi, S. Mukai ed., Marcel Dekker, 1993, p. 59-68. Zbl0797.53052MR94f:32063
  5. [EV92]ESNAULT (H.), VIEHWEG (E.). — Lectures on vanishing theorems, DMV Seminar, 1992, Band 20, Amer. Math. Soc., t. 4, 1991, p. 87-103. Zbl0779.14003
  6. [GL87]GREEN (M.), LAZARSFELD (R.). — Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese, and Beauville, Invent. Math., t. 90, 1987, p. 389-407. Zbl0659.14007MR89b:32025
  7. [GL87']GREEN (M.), LAZARSFELD (R.). — Deformation theory for cohomology of analytic vector bundles on Kähler manifolds, with applications, Mathematical Aspects of String Theory. — World Scientific, 1987, p. 416-440. Zbl0664.32015MR915835
  8. [GL91]GREEN (M.), LAZARSFELD (R.). — Higher obstructions to deforming cohomology groups of line bundles, J. Amer. Math. Soc., t. 4, 1991, p. 87-103. Zbl0735.14004MR92i:32021
  9. [Ka82]KAWAMATA (Y.). — A generalization of Kodaira-Ramanujam's vanishing theorem, Math. Ann., t. 261, 1982, p. 43-46. Zbl0476.14007MR84i:14022
  10. [Ka85]KAWAMATA (Y.). — Pluricanonical systems on minimal algebraic varieties, Invent. Math., t. 79, 1985, p. 567-588. Zbl0593.14010MR87h:14005
  11. [Ko86]KOLLÁR (J.). — Higher direct images of dualizing sheaves, I, Annals of Math., t. 123, 1986, p. 11-42. Zbl0598.14015MR87c:14038
  12. [LP73]LE POTIER (J.). — Théorème d'annulation en cohomologie, C.R. Acad. Sc. Paris, t. 276, 1973, p. 535-537. Zbl0249.32021MR49 #7482
  13. [Mo97]MOUROUGANE (Ch.). — Thèse de doctorat. — Université Grenoble I, janvier 1997. 
  14. [Vi82]VIEHWEG (E.). — Vanishing theorems, J. reine angew. Math., t. 335, 1982, p. 1-8. Zbl0485.32019MR83m:14011

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.