Geometric stability of the cotangent bundle and the universal cover of a projective manifold
Frédéric Campana; Thomas Peternell
Bulletin de la Société Mathématique de France (2011)
- Volume: 139, Issue: 1, page 41-74
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topCampana, Frédéric, and Peternell, Thomas. "Geometric stability of the cotangent bundle and the universal cover of a projective manifold." Bulletin de la Société Mathématique de France 139.1 (2011): 41-74. <http://eudml.org/doc/272521>.
@article{Campana2011,
abstract = {We first prove a strengthening of Miyaoka’s generic semi-positivity theorem: the quotients of the tensor powers of the cotangent bundle of a non-uniruled complex projective manifold $X$ have a pseudo-effective (instead of generically nef) determinant. A first consequence is that $X$ is of general type if its cotangent bundle contains a subsheaf with ‘big’ determinant. Among other applications, we deduce that if the universal cover of $X$ is not covered by compact positive-dimensional analytic subsets, then $X$ is of general type if $\chi (O_X)\ne 0$. We finally show that if $L$ is a numerically trivial line bundle on $X$, and if $K_X+L$ is $\mathbb \{Q\}$-effective, then so is $K_X$ itself. The proof of this result rests on Simpson’s work on jumping loci of numerically trivial line bundles, and Viehweg’s cyclic covers. This last result is central, and has been recently extended, using the very same ingredients, to the case of log-canonical pairs.},
author = {Campana, Frédéric, Peternell, Thomas},
journal = {Bulletin de la Société Mathématique de France},
keywords = {bundle; pseudo-effective line bundle; Moishezon-Iitaka-‘Kodaira’ dimension; universal cover; uniruledness},
language = {eng},
number = {1},
pages = {41-74},
publisher = {Société mathématique de France},
title = {Geometric stability of the cotangent bundle and the universal cover of a projective manifold},
url = {http://eudml.org/doc/272521},
volume = {139},
year = {2011},
}
TY - JOUR
AU - Campana, Frédéric
AU - Peternell, Thomas
TI - Geometric stability of the cotangent bundle and the universal cover of a projective manifold
JO - Bulletin de la Société Mathématique de France
PY - 2011
PB - Société mathématique de France
VL - 139
IS - 1
SP - 41
EP - 74
AB - We first prove a strengthening of Miyaoka’s generic semi-positivity theorem: the quotients of the tensor powers of the cotangent bundle of a non-uniruled complex projective manifold $X$ have a pseudo-effective (instead of generically nef) determinant. A first consequence is that $X$ is of general type if its cotangent bundle contains a subsheaf with ‘big’ determinant. Among other applications, we deduce that if the universal cover of $X$ is not covered by compact positive-dimensional analytic subsets, then $X$ is of general type if $\chi (O_X)\ne 0$. We finally show that if $L$ is a numerically trivial line bundle on $X$, and if $K_X+L$ is $\mathbb {Q}$-effective, then so is $K_X$ itself. The proof of this result rests on Simpson’s work on jumping loci of numerically trivial line bundles, and Viehweg’s cyclic covers. This last result is central, and has been recently extended, using the very same ingredients, to the case of log-canonical pairs.
LA - eng
KW - bundle; pseudo-effective line bundle; Moishezon-Iitaka-‘Kodaira’ dimension; universal cover; uniruledness
UR - http://eudml.org/doc/272521
ER -
References
top- [1] S. Boucksom – « Cônes positifs des variétés complexes compactes », thèse de doctorat, Université de Grenoble, 2002.
- [2] S. Boucksom, J.-P. Demailly, M. Paun & T. Peternell – « The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension », to appear in J. Alg. Geom., 2011. Zbl1267.32017MR3019449
- [3] F. Campana – « Fundamental group and positivity of cotangent bundles of compact Kähler manifolds », J. Algebraic Geom.4 (1995), p. 487–502. Zbl0845.32027MR1325789
- [4] F. Campana, J. A. Chen & T. Peternell – « Strictly nef divisors », Math. Ann.342 (2008), p. 565–585. Zbl1154.14004MR2430991
- [5] F. Campana & Q. Zhang – « Compact Kähler threefolds of -general type », in Recent progress in arithmetic and algebraic geometry, Contemp. Math., vol. 386, Amer. Math. Soc., 2005, p. 1–12. Zbl1216.32011MR2182767
- [6] J.-P. Demailly – « Complex analytic and algebraic geometry », http://www-fourier.ujf-grenoble.fr/~demailly/books.html.
- [7] J.-P. Demailly, T. Peternell & M. Schneider – « Holomorphic line bundles with partially vanishing cohomology », in Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Israel Math. Conf. Proc., vol. 9, Bar-Ilan Univ., 1996, p. 165–198. Zbl0859.14005MR1360502
- [8] H. Esnault – « Fibre de Milnor d’un cône sur une courbe plane singulière », Invent. Math.68 (1982), p. 477–496. Zbl0475.14018MR669426
- [9] D. Huybrechts & M. Lehn – The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, 1997. Zbl0872.14002MR1450870
- [10] Y. Kawamata – « Minimal models and the Kodaira dimension of algebraic fiber spaces », J. reine angew. Math. 363 (1985), p. 1–46. Zbl0589.14014MR814013
- [11] —, « Pluricanonical systems on minimal algebraic varieties », Invent. Math.79 (1985), p. 567–588. Zbl0593.14010MR782236
- [12] —, « Moderate degenerations of algebraic surfaces », in Complex algebraic varieties (Bayreuth, 1990), Lecture Notes in Math., vol. 1507, Springer, 1992, p. 113–132. Zbl0774.14032MR1178723
- [13] J. Kollár – « Shafarevich maps and plurigenera of algebraic varieties », Invent. Math.113 (1993), p. 177–215. Zbl0819.14006MR1223229
- [14] A. Langer – « Semistable sheaves in positive characteristic », Ann. of Math.159 (2004), p. 251–276. Zbl1080.14014MR2051393
- [15] J. Li & S.-T. Yau – « Hermitian-Yang-Mills connection on non-Kähler manifolds », in Mathematical aspects of string theory (San Diego, Calif., 1986), Adv. Ser. Math. Phys., vol. 1, World Sci. Publishing, 1987, p. 560–573. Zbl0664.53011MR915839
- [16] V. B. Mehta & A. Ramanathan – « Semistable sheaves on projective varieties and their restriction to curves », Math. Ann. 258 (1981/82), p. 213–224. Zbl0473.14001MR649194
- [17] Y. Miyaoka – « Deformations of a morphism along a foliation and applications », in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., 1987, p. 245–268. Zbl0659.14008MR927960
- [18] —, « Relative deformations of morphisms and applications to fibre spaces », Comment. Math. Univ. St. Paul.42 (1993), p. 1–7. Zbl0813.14001MR1223183
- [19] Y. Miyaoka & S. Mori – « A numerical criterion for uniruledness », Ann. of Math.124 (1986), p. 65–69. Zbl0606.14030MR847952
- [20] Y. Miyaoka & T. Peternell – Geometry of higher-dimensional algebraic varieties, DMV Seminar, vol. 26, Birkhäuser, 1997. Zbl0865.14018MR1468476
- [21] C. Mourougane – « Théorèmes d’annulation générique pour les fibrés vectoriels semi-négatifs », Bull. Soc. Math. France127 (1999), p. 115–133. Zbl0939.32020MR1700471
- [22] Y. Namikawa & J. H. M. Steenbrink – « Global smoothing of Calabi-Yau threefolds », Invent. Math.122 (1995), p. 403–419. Zbl0861.14036MR1358982
- [23] N. I. Shepherd-Barron – « Miyaoka’s theorem on the seminegativity of », Astérisque211 (1992), p. 103–114. Zbl0809.14034
- [24] —, « Semi-stability and reduction mod », Topology37 (1998), p. 659–664. Zbl0926.14021MR1604907
- [25] C. Simpson – « Subspaces of moduli spaces of rank one local systems », Ann. Sci. École Norm. Sup.26 (1993), p. 361–401. Zbl0798.14005MR1222278
- [26] E. Viehweg – « Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces », in Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math., vol. 1, North-Holland, 1983, p. 329–353. Zbl0513.14019MR715656
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.