Geometric stability of the cotangent bundle and the universal cover of a projective manifold
Frédéric Campana; Thomas Peternell
Bulletin de la Société Mathématique de France (2011)
- Volume: 139, Issue: 1, page 41-74
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] S. Boucksom – « Cônes positifs des variétés complexes compactes », thèse de doctorat, Université de Grenoble, 2002.
- [2] S. Boucksom, J.-P. Demailly, M. Paun & T. Peternell – « The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension », to appear in J. Alg. Geom., 2011. Zbl1267.32017MR3019449
- [3] F. Campana – « Fundamental group and positivity of cotangent bundles of compact Kähler manifolds », J. Algebraic Geom.4 (1995), p. 487–502. Zbl0845.32027MR1325789
- [4] F. Campana, J. A. Chen & T. Peternell – « Strictly nef divisors », Math. Ann.342 (2008), p. 565–585. Zbl1154.14004MR2430991
- [5] F. Campana & Q. Zhang – « Compact Kähler threefolds of -general type », in Recent progress in arithmetic and algebraic geometry, Contemp. Math., vol. 386, Amer. Math. Soc., 2005, p. 1–12. Zbl1216.32011MR2182767
- [6] J.-P. Demailly – « Complex analytic and algebraic geometry », http://www-fourier.ujf-grenoble.fr/~demailly/books.html.
- [7] J.-P. Demailly, T. Peternell & M. Schneider – « Holomorphic line bundles with partially vanishing cohomology », in Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Israel Math. Conf. Proc., vol. 9, Bar-Ilan Univ., 1996, p. 165–198. Zbl0859.14005MR1360502
- [8] H. Esnault – « Fibre de Milnor d’un cône sur une courbe plane singulière », Invent. Math.68 (1982), p. 477–496. Zbl0475.14018MR669426
- [9] D. Huybrechts & M. Lehn – The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, 1997. Zbl0872.14002MR1450870
- [10] Y. Kawamata – « Minimal models and the Kodaira dimension of algebraic fiber spaces », J. reine angew. Math. 363 (1985), p. 1–46. Zbl0589.14014MR814013
- [11] —, « Pluricanonical systems on minimal algebraic varieties », Invent. Math.79 (1985), p. 567–588. Zbl0593.14010MR782236
- [12] —, « Moderate degenerations of algebraic surfaces », in Complex algebraic varieties (Bayreuth, 1990), Lecture Notes in Math., vol. 1507, Springer, 1992, p. 113–132. Zbl0774.14032MR1178723
- [13] J. Kollár – « Shafarevich maps and plurigenera of algebraic varieties », Invent. Math.113 (1993), p. 177–215. Zbl0819.14006MR1223229
- [14] A. Langer – « Semistable sheaves in positive characteristic », Ann. of Math.159 (2004), p. 251–276. Zbl1080.14014MR2051393
- [15] J. Li & S.-T. Yau – « Hermitian-Yang-Mills connection on non-Kähler manifolds », in Mathematical aspects of string theory (San Diego, Calif., 1986), Adv. Ser. Math. Phys., vol. 1, World Sci. Publishing, 1987, p. 560–573. Zbl0664.53011MR915839
- [16] V. B. Mehta & A. Ramanathan – « Semistable sheaves on projective varieties and their restriction to curves », Math. Ann. 258 (1981/82), p. 213–224. Zbl0473.14001MR649194
- [17] Y. Miyaoka – « Deformations of a morphism along a foliation and applications », in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., 1987, p. 245–268. Zbl0659.14008MR927960
- [18] —, « Relative deformations of morphisms and applications to fibre spaces », Comment. Math. Univ. St. Paul.42 (1993), p. 1–7. Zbl0813.14001MR1223183
- [19] Y. Miyaoka & S. Mori – « A numerical criterion for uniruledness », Ann. of Math.124 (1986), p. 65–69. Zbl0606.14030MR847952
- [20] Y. Miyaoka & T. Peternell – Geometry of higher-dimensional algebraic varieties, DMV Seminar, vol. 26, Birkhäuser, 1997. Zbl0865.14018MR1468476
- [21] C. Mourougane – « Théorèmes d’annulation générique pour les fibrés vectoriels semi-négatifs », Bull. Soc. Math. France127 (1999), p. 115–133. Zbl0939.32020MR1700471
- [22] Y. Namikawa & J. H. M. Steenbrink – « Global smoothing of Calabi-Yau threefolds », Invent. Math.122 (1995), p. 403–419. Zbl0861.14036MR1358982
- [23] N. I. Shepherd-Barron – « Miyaoka’s theorem on the seminegativity of », Astérisque211 (1992), p. 103–114. Zbl0809.14034
- [24] —, « Semi-stability and reduction mod », Topology37 (1998), p. 659–664. Zbl0926.14021MR1604907
- [25] C. Simpson – « Subspaces of moduli spaces of rank one local systems », Ann. Sci. École Norm. Sup.26 (1993), p. 361–401. Zbl0798.14005MR1222278
- [26] E. Viehweg – « Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces », in Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math., vol. 1, North-Holland, 1983, p. 329–353. Zbl0513.14019MR715656