Comparing heat operators through local isometries or fibrations
Bulletin de la Société Mathématique de France (2000)
- Volume: 128, Issue: 2, page 151-178
- ISSN: 0037-9484
Access Full Article
topHow to cite
topBordoni, Manlio. "Comparing heat operators through local isometries or fibrations." Bulletin de la Société Mathématique de France 128.2 (2000): 151-178. <http://eudml.org/doc/87824>.
@article{Bordoni2000,
author = {Bordoni, Manlio},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Riemannian coverings; heat kernel; local isometry; capacity; Kato's inequality; Riemannian submersions},
language = {eng},
number = {2},
pages = {151-178},
publisher = {Société mathématique de France},
title = {Comparing heat operators through local isometries or fibrations},
url = {http://eudml.org/doc/87824},
volume = {128},
year = {2000},
}
TY - JOUR
AU - Bordoni, Manlio
TI - Comparing heat operators through local isometries or fibrations
JO - Bulletin de la Société Mathématique de France
PY - 2000
PB - Société mathématique de France
VL - 128
IS - 2
SP - 151
EP - 178
LA - eng
KW - Riemannian coverings; heat kernel; local isometry; capacity; Kato's inequality; Riemannian submersions
UR - http://eudml.org/doc/87824
ER -
References
top- [1] BÉRARD (P.), GALLOT (S.). — Inégalités isopérimétriques pour l'équation de la chaleur et applications à l'estimation de quelques invariants géométriques, in Séminaire Goulaouic-Meyer-Schwarz 1983-1984, exposé n° XV, École Polytechnique, Palaiseau, 1984. Zbl0542.53025
- [2] BÉRARD BERGERY (L.), BOURGUIGNON (J.P.). — Laplacians and Riemannian submersions with totally geodesic fibers, Illinois J. Math., t. 26, n° 2, 1982, p. 181-200. Zbl0483.58021MR84m:58153
- [3] BERGER (M.), GAUDUCHON (P.), MAZET (E.). — Le spectre d'une variété riemannienne, Lecture Notes in Math. 194. — Springer Verlag, Berlin-Heidelberg-New York, 1971. Zbl0223.53034MR43 #8025
- [4] BESSON (G.). — A Kato type inequality for Riemannian submersions with totally geodesic fibers, Ann. Glob. Analysis and Geometry, t. 4, n° 3, 1986, p. 273-289. Zbl0631.53035MR89b:58215
- [5] BESSON (G.). — On symmetrization, Contemporary Mathematics, t. 51, 1986, p. 9-21. Zbl0589.53049MR87m:58161
- [6] BISHOP (R.L.), CRITTENDEN (R.J.). — Geometry of manifolds. — Academic Press, New York-London, 1964. Zbl0132.16003MR29 #6401
- [7] BORDONI (M.). — Spectral estimates for Schrödinger and Dirac-type operators on Riemannian manifolds, Math. Ann., t. 298, 1994, p. 693-718. Zbl0791.58094MR95i:58179
- [8] BURAGO (Yu.D.), ZALGALLER (V.A.). — Geometric Inequalities, Grundlehren der math. Wiss. 285. — Springer Verlag, 1988. Zbl0633.53002
- [9] CHAVEL (I.). — Eigenvalues in Riemannian Geometry. — Academic Press, New York, 1984. Zbl0551.53001MR86g:58140
- [10] CHEEGER (J.), YAU (S.T.). — A lower bound for the heat kernel, Comm. Pure Applied Math., t. 34, 1981, p. 465-480. Zbl0481.35003MR82i:58065
- [11] COURTOIS (G.). — Estimations du noyau de la chaleur et du noyau de Green d'une variété riemannienne: applications aux variétés privées d'un Ɛ-tube, C.R. Acad. Sci. Paris, t. 303, 1986, p. 135-138. Zbl0588.53030MR87h:58220
- [12] COURTOIS (G.). — Spectre des variétés privées d'un Ɛ-tube, Prépublication Institut Fourier (Grenoble), t. 61, 1986.
- [13] COURTOIS (G.). — Spectrum of manifolds with holes, J. Funct. Anal., t. 134, 1995, p. 194-221. Zbl0847.58076MR97b:58142
- [14] DAVIES (E.B.). — Heat kernel bounds, conservation of probability and the Feller property, J. Analyse Math., t. 58, 1992, p. 99-119. Zbl0808.58041MR94e:58136
- [15] DEBIARD (A.), GAVEAU (B.), MAZET (E.). — Théorèmes de comparaison en géométrie riemannienne, C.R. Acad. Sci. Paris, t. 281, 1975, p. 455-458. Zbl0327.58014MR55 #4294
- [16] GAFFNEY (M.P.). — The conservation property of the heat equation on Riemannian manifolds, Comm. Pure Appl. Math., t. 12, 1959, p. 1-11. Zbl0102.09202MR21 #892
- [17] GALLOT (S.). — Inégalités isopérimétriques et analytiques sur les variétés riemanniennes, Astérisque 163-164, 1988, p. 31-91. Zbl0674.53001MR90f:58173
- [18] GALLOT (S.). — Isoperimetric inequalities based on integral norms of Ricci curvature, Astérisque 157-158, 1988, p. 191-216. Zbl0665.53041MR90a:58179
- [19] GALLOT (S.), HULIN (D.), LAFONTAINE (J.). — Riemannian Geometry. — Universitext, Springer Verlag, New York, 1987. Zbl0636.53001MR88k:53001
- [20] GRIGOR'YAN (A.). — On stochastically complete manifolds, (in Russian) Dokl. Akad. Nauk. SSSR, t. 290, n° 3, 1986, p. 534-537; English translation in Soviet. Math. Dokl., t. 34, n° 2, 1987, p. 310-313. Zbl0632.58041MR88a:58209
- [21] GRIGOR'YAN (A.). — Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Preprint, 1997.
- [22] HESS (H.), SCHRADER (R.), UHLENBROCK (D.A.). — Kato's inequality and the spectral distribution of Laplacians on compact Riemannian manifolds, J. Diff. Geom., t. 15, 1980, p. 27-38. Zbl0442.58032MR82g:58090
- [23] HSU (P.). — Heat semigroup on a complete Riemannian manifold, Ann. Prob., t. 17, 1989, p. 1248-1254. Zbl0694.58043MR90j:58158
- [24] ICHIHARA (K.). — Curvature, geodesics and the Brownian motion on a Riemannian manifold, II. Explosion properties, Nagoya Math. J., t. 87, 1982, p. 115-125. Zbl0514.58039MR84m:58166b
- [25] KARP (P.), LI (P.). — The heat equation on complete Riemannian manifolds, unpublished.
- [26] SAVO (A.). — A mean-value lemma and applications to heat diffusion, Prépublication Institut Fourier (Grenoble), t. 327, 1996.
- [27] SPANIER (E.H.). — Algebraic Topology. — McGraw-Hill, New York, 1966. Zbl0145.43303MR35 #1007
- [28] STURM (K.-T.). — Analysis on local Dirichlet spaces I. Recurrence, conservativeness and Lp-Liouville properties, J. reine angew. Math., t. 456, 1994, p. 173-196. Zbl0806.53041MR95i:31003
- [29] TAKEDA (M.). — On a martingale method for symmetric diffusion process and its applications, Osaka J. Math., t. 26, 1989, p. 605-623. Zbl0717.60090MR91d:60193
- [30] TISK (J.). — Eigenvalues estimates with applications to minimal surfaces, Pacific J. Math., t. 128, 1987, p. 361-366. Zbl0594.58018MR88i:53102
- [31] YAU (S.T.). — Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Math. J., t. 25, 1976, p. 659-670. Zbl0335.53041MR54 #5502
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.