Variétés affines radiales de dimension 3
Bulletin de la Société Mathématique de France (2000)
- Volume: 128, Issue: 3, page 347-389
- ISSN: 0037-9484
Access Full Article
topHow to cite
topBarbot, Thierry. "Variétés affines radiales de dimension 3." Bulletin de la Société Mathématique de France 128.3 (2000): 347-389. <http://eudml.org/doc/87831>.
@article{Barbot2000,
author = {Barbot, Thierry},
journal = {Bulletin de la Société Mathématique de France},
keywords = {radiant affine manifold; convex radiant affine manifold; developing mapping; radial flow; holonomy group; virtually solvable holonomy; generalized affine suspension; projective structure; orbifold},
language = {fre},
number = {3},
pages = {347-389},
publisher = {Société mathématique de France},
title = {Variétés affines radiales de dimension 3},
url = {http://eudml.org/doc/87831},
volume = {128},
year = {2000},
}
TY - JOUR
AU - Barbot, Thierry
TI - Variétés affines radiales de dimension 3
JO - Bulletin de la Société Mathématique de France
PY - 2000
PB - Société mathématique de France
VL - 128
IS - 3
SP - 347
EP - 389
LA - fre
KW - radiant affine manifold; convex radiant affine manifold; developing mapping; radial flow; holonomy group; virtually solvable holonomy; generalized affine suspension; projective structure; orbifold
UR - http://eudml.org/doc/87831
ER -
References
top- [1] BARBOT (T.). — La classification des surfaces affines fermées d'après Benzécri et Nagano-Yagi, et la classification des tores projectifs réels. — Prépublication Universidade Federal Fluminense, 1997.
- [2] BARBOT (T.). — Variétés affines radiales de dimension 3. — Prépublication Universidade Federal Fluminense, 1997.
- [3] BENZÉCRI (J.-P.). — Variétés localement affines et projectives, Bull. Soc. Math. France, t. 88, 1960, p. 229-332. Zbl0098.35204MR23 #A1325
- [4] BUSEMANN (H.), KELLY (P.). — Projective geometry and projective metrics. — Academic Press, 1953. Zbl0052.37305MR14,1008e
- [5] CARRIÈRE (Y.). — Flots riemanniens, Astérisque 116, 1984, p. 31-52. Zbl0548.58033MR86m:58125a
- [6] CARRIÈRE (Y.). — Questions ouvertes sur les variétés affines. — Séminaire Gaston Darboux de Géométrie et de Topologie Différentielle, 1991-1992 (Montpellier), Univ. Montpellier II, 1993, p. 69-72. Zbl0767.53007MR94e:57039
- [7] CHOI (S.). — Convex decomposition of real projective surfaces. I : л-annuli and convexity, J. Diff. Geom., t. 40, 1994, p. 165-208. Zbl0818.53042MR95i:57015
- [8] CHOI (S.). — Convex decomposition of real projective surfaces. II : Admissible decompositions, J. Diff. Geom., t. 40, 1994, p. 239-283. Zbl0822.53009MR95k:57016
- [9] CHOI (S.). — Convex decomposition of real projective surfaces. III, J. Korean. Math. Soc., t. 33, 1996. Zbl0958.53022
- [10] CHOI (S.). — The decomposition and the classification of radiant affine 3-manifolds (avec un appendice par Barbot-Choi). — Prépublication dg-ga/9712006, à paraître aux Mem. Amer. Math. Soc. Zbl0992.57009
- [11] CHOI (S.), GOLDMAN (W.M.). — The classification of real projective structures on compact surfaces, Bull. Amer. Math. Soc., t. 34 (2), 1997, p. 161-171. Zbl0866.57001MR97m:57020
- [12] EPSTEIN (D.B.A.). — Foliations with all leaves compact, Ann. Inst. Fourier, t. 26, 1976, p. 265-282. Zbl0313.57017MR54 #8664
- [13] FRIED (D.), GOLDMAN (W.), HIRSCH (M.). — Affine manifolds with nilpotent holonomy, Comment. Math. Helv., t. 56, 1981, p. 487-523. Zbl0516.57014MR83h:53062
- [14] GOLDMAN (W.M.). — Convex real projective structures on compact surfaces, J. Diff. Geom., t. 31, 1990, p. 791-845. Zbl0711.53033MR91b:57001
- [15] GOLDMAN (W.M.). — Geometric structures on manifolds and varieties of representations, in Geometry of group representations, Contemp. Math., t. 74, 1988, p. 169-198. Zbl0659.57004MR90i:57024
- [16] HAEFLIGER (A.). — Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa, t. 16, 1962, p. 367-397. Zbl0122.40702MR32 #6487
- [17] KOSZUL (J.-L.). — Déformations de connexions localement plates, Ann. Inst. Fourier, t. 18, 1968, p. 103-114. Zbl0167.50103MR39 #886
- [18] NAGANO (T.), YAGI (K.). — The affine structures on the real two-torus, Osaka J. Math., t. 11, 1974, p. 181-210. Zbl0285.53030MR51 #14086
- [19] RATCLIFFE (J.G.). — Foundations of Hyperbolics Manifolds. — Graduate Texts in Mathematics 149, Springer Verlag. Zbl0809.51001
- [20] THURSTON (W.). — Three-dimensional geometry and topology. — Notes, Berkeley University, 1990.
- [21] SULLIVAN (D.), THURSTON (W.). — Manifolds with canonical coordinates : some examples, Ens. Math., t. 29, 1983, p. 15-25. Zbl0529.53025MR84i:53035
- [22] VEY (J.). — Sur les automorphismes affines des ouverts convexes saillants, Ann. Scuol. Norm. Sup. Pisa, t. 24, 1970, p. 641-665. Zbl0206.51302MR44 #950
- [23] VINBERG (E.B.). — Homogeneous cones, Trans. Moscow Math. Soc., t. 12, 1963, p. 340-403. Zbl0138.43301MR28 #1637
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.