Variétés affines radiales de dimension 3

Thierry Barbot

Bulletin de la Société Mathématique de France (2000)

  • Volume: 128, Issue: 3, page 347-389
  • ISSN: 0037-9484

How to cite

top

Barbot, Thierry. "Variétés affines radiales de dimension 3." Bulletin de la Société Mathématique de France 128.3 (2000): 347-389. <http://eudml.org/doc/87831>.

@article{Barbot2000,
author = {Barbot, Thierry},
journal = {Bulletin de la Société Mathématique de France},
keywords = {radiant affine manifold; convex radiant affine manifold; developing mapping; radial flow; holonomy group; virtually solvable holonomy; generalized affine suspension; projective structure; orbifold},
language = {fre},
number = {3},
pages = {347-389},
publisher = {Société mathématique de France},
title = {Variétés affines radiales de dimension 3},
url = {http://eudml.org/doc/87831},
volume = {128},
year = {2000},
}

TY - JOUR
AU - Barbot, Thierry
TI - Variétés affines radiales de dimension 3
JO - Bulletin de la Société Mathématique de France
PY - 2000
PB - Société mathématique de France
VL - 128
IS - 3
SP - 347
EP - 389
LA - fre
KW - radiant affine manifold; convex radiant affine manifold; developing mapping; radial flow; holonomy group; virtually solvable holonomy; generalized affine suspension; projective structure; orbifold
UR - http://eudml.org/doc/87831
ER -

References

top
  1. [1] BARBOT (T.). — La classification des surfaces affines fermées d'après Benzécri et Nagano-Yagi, et la classification des tores projectifs réels. — Prépublication Universidade Federal Fluminense, 1997. 
  2. [2] BARBOT (T.). — Variétés affines radiales de dimension 3. — Prépublication Universidade Federal Fluminense, 1997. 
  3. [3] BENZÉCRI (J.-P.). — Variétés localement affines et projectives, Bull. Soc. Math. France, t. 88, 1960, p. 229-332. Zbl0098.35204MR23 #A1325
  4. [4] BUSEMANN (H.), KELLY (P.). — Projective geometry and projective metrics. — Academic Press, 1953. Zbl0052.37305MR14,1008e
  5. [5] CARRIÈRE (Y.). — Flots riemanniens, Astérisque 116, 1984, p. 31-52. Zbl0548.58033MR86m:58125a
  6. [6] CARRIÈRE (Y.). — Questions ouvertes sur les variétés affines. — Séminaire Gaston Darboux de Géométrie et de Topologie Différentielle, 1991-1992 (Montpellier), Univ. Montpellier II, 1993, p. 69-72. Zbl0767.53007MR94e:57039
  7. [7] CHOI (S.). — Convex decomposition of real projective surfaces. I : л-annuli and convexity, J. Diff. Geom., t. 40, 1994, p. 165-208. Zbl0818.53042MR95i:57015
  8. [8] CHOI (S.). — Convex decomposition of real projective surfaces. II : Admissible decompositions, J. Diff. Geom., t. 40, 1994, p. 239-283. Zbl0822.53009MR95k:57016
  9. [9] CHOI (S.). — Convex decomposition of real projective surfaces. III, J. Korean. Math. Soc., t. 33, 1996. Zbl0958.53022
  10. [10] CHOI (S.). — The decomposition and the classification of radiant affine 3-manifolds (avec un appendice par Barbot-Choi). — Prépublication dg-ga/9712006, à paraître aux Mem. Amer. Math. Soc. Zbl0992.57009
  11. [11] CHOI (S.), GOLDMAN (W.M.). — The classification of real projective structures on compact surfaces, Bull. Amer. Math. Soc., t. 34 (2), 1997, p. 161-171. Zbl0866.57001MR97m:57020
  12. [12] EPSTEIN (D.B.A.). — Foliations with all leaves compact, Ann. Inst. Fourier, t. 26, 1976, p. 265-282. Zbl0313.57017MR54 #8664
  13. [13] FRIED (D.), GOLDMAN (W.), HIRSCH (M.). — Affine manifolds with nilpotent holonomy, Comment. Math. Helv., t. 56, 1981, p. 487-523. Zbl0516.57014MR83h:53062
  14. [14] GOLDMAN (W.M.). — Convex real projective structures on compact surfaces, J. Diff. Geom., t. 31, 1990, p. 791-845. Zbl0711.53033MR91b:57001
  15. [15] GOLDMAN (W.M.). — Geometric structures on manifolds and varieties of representations, in Geometry of group representations, Contemp. Math., t. 74, 1988, p. 169-198. Zbl0659.57004MR90i:57024
  16. [16] HAEFLIGER (A.). — Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa, t. 16, 1962, p. 367-397. Zbl0122.40702MR32 #6487
  17. [17] KOSZUL (J.-L.). — Déformations de connexions localement plates, Ann. Inst. Fourier, t. 18, 1968, p. 103-114. Zbl0167.50103MR39 #886
  18. [18] NAGANO (T.), YAGI (K.). — The affine structures on the real two-torus, Osaka J. Math., t. 11, 1974, p. 181-210. Zbl0285.53030MR51 #14086
  19. [19] RATCLIFFE (J.G.). — Foundations of Hyperbolics Manifolds. — Graduate Texts in Mathematics 149, Springer Verlag. Zbl0809.51001
  20. [20] THURSTON (W.). — Three-dimensional geometry and topology. — Notes, Berkeley University, 1990. 
  21. [21] SULLIVAN (D.), THURSTON (W.). — Manifolds with canonical coordinates : some examples, Ens. Math., t. 29, 1983, p. 15-25. Zbl0529.53025MR84i:53035
  22. [22] VEY (J.). — Sur les automorphismes affines des ouverts convexes saillants, Ann. Scuol. Norm. Sup. Pisa, t. 24, 1970, p. 641-665. Zbl0206.51302MR44 #950
  23. [23] VINBERG (E.B.). — Homogeneous cones, Trans. Moscow Math. Soc., t. 12, 1963, p. 340-403. Zbl0138.43301MR28 #1637

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.