Failure of convergence of the Lax-Oleinik semi-group in the time periodic case

Albert Fathi; John Mather

Bulletin de la Société Mathématique de France (2000)

  • Volume: 128, Issue: 3, page 473-483
  • ISSN: 0037-9484

How to cite

top

Fathi, Albert, and Mather, John. "Failure of convergence of the Lax-Oleinik semi-group in the time periodic case." Bulletin de la Société Mathématique de France 128.3 (2000): 473-483. <http://eudml.org/doc/87836>.

@article{Fathi2000,
author = {Fathi, Albert, Mather, John},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Lagrangian; Lax-Oleinik semigroup},
language = {eng},
number = {3},
pages = {473-483},
publisher = {Société mathématique de France},
title = {Failure of convergence of the Lax-Oleinik semi-group in the time periodic case},
url = {http://eudml.org/doc/87836},
volume = {128},
year = {2000},
}

TY - JOUR
AU - Fathi, Albert
AU - Mather, John
TI - Failure of convergence of the Lax-Oleinik semi-group in the time periodic case
JO - Bulletin de la Société Mathématique de France
PY - 2000
PB - Société mathématique de France
VL - 128
IS - 3
SP - 473
EP - 483
LA - eng
KW - Lagrangian; Lax-Oleinik semigroup
UR - http://eudml.org/doc/87836
ER -

References

top
  1. [1] BANGERT (V.). — Mather Sets for Twist Maps and Geodesics on Tori, Dyn. Rep., t. 1, 1988, p. 1-56. Zbl0664.53021MR90a:58145
  2. [2] BANGERT (V.). — Geodesic Rays, Busemann Functions, and Monotone Twist Maps, Calc. Var., t. 2, 1994, p. 49-63. Zbl0794.58010MR97b:53041
  3. [3] BARLES (G.), SOUGANIDIS (P.E.). — On the Large Time Behavior of Solutions of Hamilton-Jacobi Equations. — Preprint, 1998. 
  4. [4] FATHI (A.). — Sur la convergence du semi-groupe de Lax-Oleinik, C. R. Acad. Sci. Paris, Série I, t. 327, 1998, p. 267-270. Zbl1052.37514MR2000a:37058
  5. [5] DENZLER (J.). — Mather Sets for Plane Hamiltonian Systems, J. Applied Math. Phys. (ZAMP), t. 38, 1987, p. 791-812. Zbl0641.70014MR89h:58055
  6. [6] MAà'É (R.). — On the Minimizing Measures of Lagrangian Dynamical Systems, Nonlinearity, t. 5, 1992, p. 623-638. Zbl0799.58030MR93h:58059
  7. [7] MATHER (J.). — Differentiability of the Minimal Average Action as a Function of the Rotation Number, Bol. Soc. Bras. Mat., t. 21, 1990, p. 59-70. Zbl0766.58033MR92j:58061
  8. [8] MATHER (J.). — Action Minimizing Measures for Positive Definite Lagrangian Systems, Math. Z., t. 207, 1991, p. 169-207. Zbl0696.58027MR92m:58048
  9. [9] MATHER (J.). — Variational Construction of Connecting Orbits, Ann. Inst. Fourier, Grenoble, t. 43, 1993, p. 1349-1386. Zbl0803.58019MR95c:58075
  10. [10] NAMAH, (G.), ROQUEJOFFRE, (J.-M.). — Comportement asymptotique des solutions d'une classe d'équations paraboliques et de Hamilton-Jacobi, C. R. Acad. Sci. Paris, Série I, t. 324, 1997, p. 1367-1370. Zbl0878.35056MR98c:35078
  11. [11] NAMAH, (G.), ROQUEJOFFRE, (J.-M.). — Remarks on the Long Time Behavior of the Solutions of Hamilton-Jacobi Equations, Comm. Partial Diff. Eq., t. 5, 1999, p. 883-894. Zbl0924.35028MR2000j:35034
  12. [12] ROQUEJOFFRE (J.-M.). — Comportement asymptotique des solutions d'équations de Hamilton-Jacobi monodimensionnelles, C. R. Acad. Sci. Paris, Série I, t. 326, 1998, p. 185-189. Zbl0924.70017MR1646936
  13. [13] ROQUEJOFFRE (J.-M.). — Convergence to Steady States or Periodic Solutions in a Class of Hamilton-Jacobi Equations. — Preprint, 1998. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.