Variational construction of connecting orbits
Annales de l'institut Fourier (1993)
- Volume: 43, Issue: 5, page 1349-1386
- ISSN: 0373-0956
Access Full Article
topHow to cite
topMather, John N.. "Variational construction of connecting orbits." Annales de l'institut Fourier 43.5 (1993): 1349-1386. <http://eudml.org/doc/75041>.
@article{Mather1993,
author = {Mather, John N.},
journal = {Annales de l'institut Fourier},
keywords = {connecting orbits; Lagrangian systems; action minimizing sets},
language = {eng},
number = {5},
pages = {1349-1386},
publisher = {Association des Annales de l'Institut Fourier},
title = {Variational construction of connecting orbits},
url = {http://eudml.org/doc/75041},
volume = {43},
year = {1993},
}
TY - JOUR
AU - Mather, John N.
TI - Variational construction of connecting orbits
JO - Annales de l'institut Fourier
PY - 1993
PB - Association des Annales de l'Institut Fourier
VL - 43
IS - 5
SP - 1349
EP - 1386
LA - eng
KW - connecting orbits; Lagrangian systems; action minimizing sets
UR - http://eudml.org/doc/75041
ER -
References
top- [Arn1] V.I. ARNOLD, First steps in symplectic topology, Russ. Math. Surv., 41 (1986), 1-21. Zbl0649.58010MR89d:58034
- [Arn2] V.I. ARNOLD, Instability of dynamical systems with many degrees of freedom, Dokl. Akad. Nauk SSSR, 156 (1964), 9-12. Zbl0135.42602MR29 #329
- [A-LD-A] S. AUBRY, P.Y. LEDAERON, G. ANDRÉ, Classical ground-states of a one dimensional model for incommensurate structures, preprint (1982).
- [Aub] S. AUBRY, The Devil's Staircase Transformation in Incommensurate Lattices in the Riemann Problem, Complete Integrability, and Arithmetic Applications, ed. by Chudnovsky and Chudnovsky, Lecture Notes in Math., Springer-Verlag, 925 (1982), 221-245.
- [Bal] J. BALL, V. MIZEL, One dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation, Arch. Ration. Mech. Anal., 90 (1985), 325-388. Zbl0585.49002MR86k:49002
- [Ban1] V. BANGERT, Mather sets for twist maps and geodesics on tori, Dyn. Rep., 1 (1988), 1-56. Zbl0664.53021MR90a:58145
- [Ban2] V. BANGERT, Minimal geodesics, Ergod. Th. & Dynam. Sys., 10 (1989), 263-286. Zbl0676.53055MR91j:58126
- [Ban3] V. BANGERT, Geodesic Rays, Busemann Functions, and Monotone Twist Maps, Calc. Var. 2 (1994), 49-63. Zbl0794.58010
- [B-K] D. BERNSTEIN, A. KATOK, Birkhoff periodic orbits for small perturbations of completely integrable systems with convex Hamiltonians, Invent. Math., 88 (1987), 225-241. Zbl0642.58040MR88i:58048
- [B-P] M. BIALY and L. POLTEROVICH, Hamiltonian systems, Lagrangian tori, and Birkhoff's theorem, Math. Ann., 292 (1992), 619-627. Zbl0735.58016
- [Bol] S. BOLOTIN, Homoclinic orbits to invariant tori of symplectic diffeomorphisms and Hamiltonian systems, Advances in Soviet Math., to appear. Zbl0847.58024
- [Cara] C. CARATHEODORY, Variationsrechnung und partielle Differentialgleichung erster Ordnung, B. G. Teubner, Leipzig, Berlin, 1935. Zbl0011.35603JFM61.0547.01
- [Cart] E. CARTAN, Leçons sur les invariants intégraux, Herman, Paris, 1922. JFM48.0538.02
- [Den] J. DENZLER, Mather sets for plane Hamiltonian systems, J. Appl. Math. Phys. (ZAMP), 38 (1987), 791-812. Zbl0641.70014MR89h:58055
- [Her1] M. HERMAN, Sur la conjugaison différentiable des difféomorphismes du circle à des rotations, IHES Publ. Math., 49 (1979), 5-234. Zbl0448.58019MR81h:58039
- [Her2] M. HERMAN, Existence et non existence de tores invariantes par des difféomorphismes symplectiques, preprint (1988). Zbl0664.58005
- [Kat] A. KATOK, Minimal orbits for small parturbations of completely integrable Hamiltonian systems, preprint (1988). Zbl0762.58024
- [K-B] N. KRYLOFF, N. BOGOLIUBOFF, La theorie générale de la mesure et son application à l'étude des systèmes dynamiques de la mécanique non linéaire, Ann. Math., II Ser, 38 (1937), 65-113. Zbl0016.08604JFM63.1002.01
- [Ma샱1] R. MA샑É, Global Variational Methods in Conservative Dynamics, 18° Coloquio Brasileiro de Mathemática, IMPA, 1991.
- [Ma샱2] R. MA샑É, On the minimizing measures of Lagrangian Dynamical Systems, Nonlinearity, 5 (1992), 623-638. Zbl0799.58030MR93h:58059
- [Ma샱3] R. MA샑É, Generic Properties and Problems of Minimizing Measures of Lagrangian Systems, preprint.
- [Ma1] J. MATHER, More Denjoy minimal sets for area preserving diffeomorphisms, Comment. Math. Helv., 60 (1985), 508-557. Zbl0597.58015MR87f:58086
- [Ma2] J. MATHER, Modulus of Continuity for Peierls's Barrier, Periodic Solutions of Hamiltonian Systems and Related Topics, ed. by Rabinowitz, et. al., NATO ASI, Series C : vol. 209, Dordrecht : D. Reidel (1987), 177-202. Zbl0658.58013MR89c:58109
- [Ma3] J. MATHER, Destruction of Invariant Circles, Ergodic Theory and Dynamical Systems, 8* (vol. dedicated to Charles Conley) (1988), 199-214. Zbl0688.58024MR89k:58097
- [Ma4] J. MATHER, Minimal Measures, Comm. Math. Helv., 64 (1989), 375-394. Zbl0689.58025MR90f:58067
- [Ma5] J. MATHER, Variational Construction of Orbits of Twist Diffeomorphisms, Journal of the American Math. Soc., 4 (1991), 207-263. Zbl0737.58029MR92d:58139
- [Ma6] J. MATHER, Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z., 207 (1991), 169-207. Zbl0696.58027MR92m:58048
- [Ma7] J. MATHER, Differentiability of the minimal average action as a function of the rotation number, Bol. Soc. Bras. Mat., 21 (1990), 59-70. Zbl0766.58033MR92j:58061
- [Mo] J. MOSER, Monotone Twist Mappings and the Calculus of Variations, Ergodic Theory and Dyn. Syst., 6 (1986), 401-413. Zbl0619.49020MR88a:58076
- [N-S] V. NEMYTSKII, V. STEPANOV, Qualitative Theory of Differential Equations, Princeton Univ. Press, Princeton, N.J., 1960. Zbl0089.29502MR22 #12258
- [Roc] R. ROCKAFELLER, Convex Analysis, Princeton Math. Ser, Princeton, N.J., 28 (1970). Zbl0193.18401MR43 #445
- [Sch] S. SCHWARTZMAN, Asymptotic cycles, Ann. Math., 66 (1957), 270-284. Zbl0207.22603MR19,568i
- [Yoc] J.-C. YOCCOZ, Travaux de Herman sur les Tores invariants, Séminaire Bourbaki, vol. 1991/92, exposé 754, Astérisque, 206 (1992). Zbl0791.58044MR94g:58195
Citations in EuDML Documents
top- Albert Fathi, John Mather, Failure of convergence of the Lax-Oleinik semi-group in the time periodic case
- Jean-Pierre Marco, Transition le long des chaînes de tores invariants pour les systèmes hamiltoniens analytiques
- S. V. Bolotin, P. H. Rabinowitz, A variational construction of chaotic trajectories for a Hamiltonian system on a torus
- Patrick Bernard, Connecting orbits of time dependent Lagrangian systems
- Stefano Marmi, Chaotic behaviour in the solar system
- Jean-Pierre Marco, David Sauzin, Stability and instability for Gevrey quasi-convex near-integrable hamiltonian systems
- Elena Bosetto, Enrico Serra, A variational approach to chaotic dynamics in periodically forced nonlinear oscillators
- Ludovic Rifford, Regularity of weak KAM solutions and Mañé’s Conjecture
- Ugo Bessi, Aubry sets and the differentiability of the minimal average action in codimension one
- Gabriel P. Paternain, Hyperbolic dynamics of Euler-Lagrange flows on prescribed energy levels
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.