Negligible subsets of infinite-dimensional manifolds
R. D. Anderson; David W. Henderson; James E. West
Compositio Mathematica (1969)
- Volume: 21, Issue: 2, page 143-150
- ISSN: 0010-437X
Access Full Article
topHow to cite
topReferences
top- R.D. Anderson [1] On a theorem of Klee, Proc. AMS17 (1966), 1401-4. Zbl0152.12502MR205029
- R.D. Anderson [2] Hilbert space is homeomorphic to the countable infinite product of open intervals, Trans. AMS72 (1966), 516-519. Zbl0137.09703MR190888
- R.D. Anderson [3] Topological properties of the Hilbert cube and the infinite product of open intervals, Trans. AMS126 (1967), 200 — 216. Zbl0152.12601
- R.D. Anderson [4] On topological infinite deficiency, Mich. Math. J.14 (1967), 365-383. Zbl0148.37202MR214041
- R.D. Anderson and R.H. Bing [5] A complete, elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines, Bul. AMS74 (1968), 771-792. Zbl0189.12402MR230284
- Cz. Bessaga and V.L. Klee, Jr. [6] Two topological properties of topological linear spaces, Israel J. Math.2 (1964), 211-220. Zbl0138.37402MR180825
- Cz. Bessaga and A. Pelczynski [7] Some remarks on homeomorphisms of F-spaces, Bull. Acad. Polon. Sci. Ser. Sci Math. Astron. Phys.10 (1962), 265-270. Zbl0103.32801MR139917
- J. Eells, Jr. and N.H. Kuiper [8] Homotopy negligible subsets. Zbl0181.51401
- M.I. Kadec [9] On topological equivalence of all separable Banach spaces (Russian), Dokl. Akad. Nauk. SSSR167 (1966), 23-25. Zbl0156.13701MR201951
- S. Kaplan [10] Homology properties of arbitrary subsets of Euclidean spaces, Trans. AMS62 (1947), 248-271. Zbl0034.10902MR24128
- V.L. Kleej Jr. [11] A note on topological properties of normed linear spaces, Proc. AMS7 (1956), 673-4. Zbl0070.11103
- Bor-Luh Lin [12] Two topological properties concerning infinite-dimensional normed linear spaces, Trans. AMS114 (1965), 156-175. Zbl0133.06603MR180831
- R.S. Palais [13] Homotopy theory of infinite-dimensional manifolds, Topology5 (1966), 1-16. Zbl0138.18302MR189028
- W. Sierpinski [14] Sur les espaces métriques localement séparables, Fund. Math.21 (1933), 107-113. Zbl0008.08901JFM59.0568.01