The diffeomorphic excision of closed local compacta from infinite-dimensional Hilbert manifolds

James E. West

Compositio Mathematica (1969)

  • Volume: 21, Issue: 3, page 271-291
  • ISSN: 0010-437X

How to cite

top

West, James E.. "The diffeomorphic excision of closed local compacta from infinite-dimensional Hilbert manifolds." Compositio Mathematica 21.3 (1969): 271-291. <http://eudml.org/doc/89019>.

@article{West1969,
author = {West, James E.},
journal = {Compositio Mathematica},
keywords = {topology},
language = {eng},
number = {3},
pages = {271-291},
publisher = {Wolters-Noordhoff Publishing},
title = {The diffeomorphic excision of closed local compacta from infinite-dimensional Hilbert manifolds},
url = {http://eudml.org/doc/89019},
volume = {21},
year = {1969},
}

TY - JOUR
AU - West, James E.
TI - The diffeomorphic excision of closed local compacta from infinite-dimensional Hilbert manifolds
JO - Compositio Mathematica
PY - 1969
PB - Wolters-Noordhoff Publishing
VL - 21
IS - 3
SP - 271
EP - 291
LA - eng
KW - topology
UR - http://eudml.org/doc/89019
ER -

References

top
  1. R.D. Anderson [1] On a theorem of Klee, Proc. AMS17 (1966), 1401—4. Zbl0152.12502
  2. R.D. Anderson, D.W. Henderson and J.E. West [2] Negiligible subsets of infinite-dimensional manifolds, Compositio Math. (to appear). Zbl0185.50803MR246326
  3. CZ. Bessaga [3] Any Hilbert space of infinite dimension is diffeomorphic with its unit sphere, Bull. Acad. Polon. Sci. Ser., Sci. Math. Astron. Phys.14 (1966), 27—30. Zbl0151.17703
  4. S. Kaplan [4] Homology properties of arbitrary subsets of Euclidean spaces, Trans. AMS62 (1947), 248—271. Zbl0034.10902
  5. V.L. Klee, Jr. [5] Convex bodies and periodic homeomorphisms in Hilbert space, Trans. AMS74 (1953), 10—43. Zbl0050.33202
  6. S. Lang [6] Introduction to Differentiable Manifolds, Interscience, New York, 1962. Zbl0103.15101MR155257
  7. R.S. Palais [7] Homotopy theory of infinite dimensional manifolds, Topology5 (1966), 1-16. Zbl0138.18302MR189028
  8. R.S. Palais [8] Lectures on the Differential Topology of Infinite Dimensional Manifolds, Mimeographed Notes by S. Greenfield, Brandeis University, 1964-1965. 

NotesEmbed ?

top

You must be logged in to post comments.