An algebraic treatment of Mal'cev's theorems concerning nilpotent Lie groups and their Lie algebras

I. N. Stewart

Compositio Mathematica (1970)

  • Volume: 22, Issue: 3, page 289-312
  • ISSN: 0010-437X

How to cite

top

Stewart, I. N.. "An algebraic treatment of Mal'cev's theorems concerning nilpotent Lie groups and their Lie algebras." Compositio Mathematica 22.3 (1970): 289-312. <http://eudml.org/doc/89061>.

@article{Stewart1970,
author = {Stewart, I. N.},
journal = {Compositio Mathematica},
language = {eng},
number = {3},
pages = {289-312},
publisher = {Wolters-Noordhoff Publishing},
title = {An algebraic treatment of Mal'cev's theorems concerning nilpotent Lie groups and their Lie algebras},
url = {http://eudml.org/doc/89061},
volume = {22},
year = {1970},
}

TY - JOUR
AU - Stewart, I. N.
TI - An algebraic treatment of Mal'cev's theorems concerning nilpotent Lie groups and their Lie algebras
JO - Compositio Mathematica
PY - 1970
PB - Wolters-Noordhoff Publishing
VL - 22
IS - 3
SP - 289
EP - 312
LA - eng
UR - http://eudml.org/doc/89061
ER -

References

top
  1. G. Birkhoff [1] Representability of Lie algebras and Lie groups by matrices, Ann. Math. (2) 38 (1937) 526-532. Zbl0016.24402MR1503351JFM63.0090.01
  2. P. Hall [2] On non-strictly simple groups, Proc. Cambridge Phil. Soc.59 (1963) 531-553. [3] Nilpotent groups, Canad. Math. Congr. Summer Seminar, Univ. of Alberta, 1957. Zbl0118.03601MR156886
  3. P. Hall AND C.R. Kulatilaka [4] A property of locally finite groups, J. London Math. Soc.39 (1964) 235-239. Zbl0136.27903MR161907
  4. B. Hartley [5] Locally nilpotent ideals of a Lie algebra, Proc. Cambridge Phil. Soc.63 (1967) 257-272. Zbl0147.28201MR213402
  5. N. Jacobson [6] Lie Algebras, Interscience, New York, 1962. Zbl0121.27504MR143793
  6. S.A. Jennings [7] The group ring of a class of infinite nilpotent groups, Canad. J. Math.7 (1955) 169-187. Zbl0066.01302MR68540
  7. M.I. Kargapolov [8 ] On the completion of locally nilpotent groups, Sibirsk Mat. Ž.3 (1962) 695-700 (Russian). [9] On the π-completion of locally nilpotent groups, Alg. i Log. Sem.1 (1962) 5-13 (Russian). Zbl0121.03102
  8. C.R. Kulatilaka [10] Infinite abelian subgroups of some infinite groups, J. London Math. Soc.39 (1964) 240-244. Zbl0136.28001MR161908
  9. A.G. Kuroš [11] Theory of groups vol. II, Chelsea, New York, 1956. Translated by K. A. Hirsch. Zbl0064.25104MR80089
  10. M. Lazard [12] Sur certaines suites d'éléments dans les groupes libres et leurs extensions, C. R. Acad. Sci. Paris236 (1953) 36-38. [13] Problèmes d'extension concernant les N-groupes; inversion de la formule de Hausdorff, C. R. Acad. Sci. Paris237 (1953) 1377-1379. Zbl0051.01503MR52428
  11. A.I. Mal'cev [14] Nilpotent torsion-free groups, Izv. Akad. Nauk SSSR Ser. Mat.13 (1949) 201-212 (Russian). Zbl0034.01702MR28843
  12. D.J.S. Robinson [15] Infinite soluble and nilpotent groups, Queen Mary College Mathematics Notes, 1968. MR269740
  13. J.E. Roseblade [16] On groups in which every subgroup is subnormal, J. Algebra2 (1965) 402-412. Zbl0135.04901MR193147
  14. I.N. Stewart [17] The minimal condition for subideals of Lie algebras, Math. Z.111 (1969) 301-310. [18] Baer and Fitting radicals in groups and Lie algebras (to appear). [19] A property of locally finite Lie algebras (to appear). Zbl0179.33203MR251093
  15. R.G. Swan [20] Representations of polycyclic groups, Proc. Amer. Math. Soc.18 (1967) 573-574. Zbl0153.03801MR213442

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.