An algebraic treatment of Mal'cev's theorems concerning nilpotent Lie groups and their Lie algebras
Compositio Mathematica (1970)
- Volume: 22, Issue: 3, page 289-312
- ISSN: 0010-437X
Access Full Article
topHow to cite
topStewart, I. N.. "An algebraic treatment of Mal'cev's theorems concerning nilpotent Lie groups and their Lie algebras." Compositio Mathematica 22.3 (1970): 289-312. <http://eudml.org/doc/89061>.
@article{Stewart1970,
author = {Stewart, I. N.},
journal = {Compositio Mathematica},
language = {eng},
number = {3},
pages = {289-312},
publisher = {Wolters-Noordhoff Publishing},
title = {An algebraic treatment of Mal'cev's theorems concerning nilpotent Lie groups and their Lie algebras},
url = {http://eudml.org/doc/89061},
volume = {22},
year = {1970},
}
TY - JOUR
AU - Stewart, I. N.
TI - An algebraic treatment of Mal'cev's theorems concerning nilpotent Lie groups and their Lie algebras
JO - Compositio Mathematica
PY - 1970
PB - Wolters-Noordhoff Publishing
VL - 22
IS - 3
SP - 289
EP - 312
LA - eng
UR - http://eudml.org/doc/89061
ER -
References
top- G. Birkhoff [1] Representability of Lie algebras and Lie groups by matrices, Ann. Math. (2) 38 (1937) 526-532. Zbl0016.24402MR1503351JFM63.0090.01
- P. Hall [2] On non-strictly simple groups, Proc. Cambridge Phil. Soc.59 (1963) 531-553. [3] Nilpotent groups, Canad. Math. Congr. Summer Seminar, Univ. of Alberta, 1957. Zbl0118.03601MR156886
- P. Hall AND C.R. Kulatilaka [4] A property of locally finite groups, J. London Math. Soc.39 (1964) 235-239. Zbl0136.27903MR161907
- B. Hartley [5] Locally nilpotent ideals of a Lie algebra, Proc. Cambridge Phil. Soc.63 (1967) 257-272. Zbl0147.28201MR213402
- N. Jacobson [6] Lie Algebras, Interscience, New York, 1962. Zbl0121.27504MR143793
- S.A. Jennings [7] The group ring of a class of infinite nilpotent groups, Canad. J. Math.7 (1955) 169-187. Zbl0066.01302MR68540
- M.I. Kargapolov [8 ] On the completion of locally nilpotent groups, Sibirsk Mat. Ž.3 (1962) 695-700 (Russian). [9] On the π-completion of locally nilpotent groups, Alg. i Log. Sem.1 (1962) 5-13 (Russian). Zbl0121.03102
- C.R. Kulatilaka [10] Infinite abelian subgroups of some infinite groups, J. London Math. Soc.39 (1964) 240-244. Zbl0136.28001MR161908
- A.G. Kuroš [11] Theory of groups vol. II, Chelsea, New York, 1956. Translated by K. A. Hirsch. Zbl0064.25104MR80089
- M. Lazard [12] Sur certaines suites d'éléments dans les groupes libres et leurs extensions, C. R. Acad. Sci. Paris236 (1953) 36-38. [13] Problèmes d'extension concernant les N-groupes; inversion de la formule de Hausdorff, C. R. Acad. Sci. Paris237 (1953) 1377-1379. Zbl0051.01503MR52428
- A.I. Mal'cev [14] Nilpotent torsion-free groups, Izv. Akad. Nauk SSSR Ser. Mat.13 (1949) 201-212 (Russian). Zbl0034.01702MR28843
- D.J.S. Robinson [15] Infinite soluble and nilpotent groups, Queen Mary College Mathematics Notes, 1968. MR269740
- J.E. Roseblade [16] On groups in which every subgroup is subnormal, J. Algebra2 (1965) 402-412. Zbl0135.04901MR193147
- I.N. Stewart [17] The minimal condition for subideals of Lie algebras, Math. Z.111 (1969) 301-310. [18] Baer and Fitting radicals in groups and Lie algebras (to appear). [19] A property of locally finite Lie algebras (to appear). Zbl0179.33203MR251093
- R.G. Swan [20] Representations of polycyclic groups, Proc. Amer. Math. Soc.18 (1967) 573-574. Zbl0153.03801MR213442
Citations in EuDML Documents
top- Ian Stewart, The Lie algebra of endomorphisms of an infinite-dimensional vector space
- Ralph K. Amayo, Soluble subideals of Lie algebras
- Ian Stewart, A note on 2-step subideals of Lie algebras
- Temple H. Fay, Remarks on the Mal'cev completion of torsion-free locally nilpotent groups
- Ian Stewart, Conjugacy theorems for a class of locally finite Lie algebras
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.