Conjugacy theorems for a class of locally finite Lie algebras

Ian Stewart

Compositio Mathematica (1975)

  • Volume: 30, Issue: 2, page 181-210
  • ISSN: 0010-437X

How to cite

top

Stewart, Ian. "Conjugacy theorems for a class of locally finite Lie algebras." Compositio Mathematica 30.2 (1975): 181-210. <http://eudml.org/doc/89253>.

@article{Stewart1975,
author = {Stewart, Ian},
journal = {Compositio Mathematica},
language = {eng},
number = {2},
pages = {181-210},
publisher = {Noordhoff International Publishing},
title = {Conjugacy theorems for a class of locally finite Lie algebras},
url = {http://eudml.org/doc/89253},
volume = {30},
year = {1975},
}

TY - JOUR
AU - Stewart, Ian
TI - Conjugacy theorems for a class of locally finite Lie algebras
JO - Compositio Mathematica
PY - 1975
PB - Noordhoff International Publishing
VL - 30
IS - 2
SP - 181
EP - 210
LA - eng
UR - http://eudml.org/doc/89253
ER -

References

top
  1. [1] R.K. Amayo and Ian Stewart: Infinite-dimensional Lie algebras. Noordhoff International, Leyden1974. Zbl0302.17006MR396708
  2. [2] R.K. Amayo and Ian Stewart: Descending chain conditions for Lie algebras of prime characteristic. J. Algebra (to appear). Zbl0311.17006MR374218
  3. [3] D.W. Barnes and H.M. Gastineau-Hills: On the theory of soluble Lie algebras. Math. Z.106 (1968) 343-354. Zbl0164.03701MR232807
  4. [4] D.W. Barnes and M.L. Newell: Some theorems on saturated homomorphs of soluble Lie algebras. Math. Z.115 (1970) 179-187. Zbl0197.03003MR266969
  5. [5] A. Borel: Linear algebraic groups. Ann. of Math. (2) 64 (1956) 20-82. Zbl0070.26104MR204532
  6. [6] A. Borel: Linear algebraic groups. Benjamin, New York1969. Zbl0186.33201MR251042
  7. [7] N. Bourbaki: Topologie Générale I. 3rd edition, Hermann, Paris1961. Zbl0249.54001
  8. [8] N. Bourbaki: General Topology part 1. Addison-Wesley, Reading Massachusetts1966. Zbl0301.54001
  9. [9] R.W. Carter: Nilpotent self-normalizing subgroups of soluble groups. Math. Z.75 (1961) 136-139. Zbl0168.27301MR123603
  10. [10] C. Chevalley: Théorie des groupes de Lie, tome II: groupes algébriques. Hermann, Paris1951. Zbl0054.01303MR51242
  11. [11] P. Deligne: Private communication, 1973. 
  12. [12] A.D. Gardiner, B. Hartley and M.J. Tomkinson: Saturated formations and Sylow structure in locally finite groups. J. Algebra17 (1971) 177-211. Zbl0215.10605MR272897
  13. [13] W. Gaschütz: Zur Theorie der endlichen auflösbaren Gruppen. Math. Z.80 (1963) 300-305. Zbl0111.24402MR179257
  14. [14] A. Grothendieck: Éléments de Géometrie algébrique IV(1). Publ. Math. I.H.E.S.20 (1964) 101-355. Zbl0136.15901
  15. [15] B. Hartley: Locally nilpotent ideals of a Lie algebra. Proc. Cambridge Philos. Soc.63 (1967) 257-272. Zbl0147.28201MR213402
  16. [16] J.E. Humphreys: Introduction to Lie algebras and representation theory, Graduate texts in mathematics 9. Springer, Berlin1972. Zbl0254.17004MR499562
  17. [17] N. Jacobson: Lie algebras, Interscience. New York1962. Zbl0121.27504MR143793
  18. [18] A.A. Klimowicz: Fitting and formation theory in locally finite groups, Ph.D. thesis. University of Warwick1973. Zbl0304.20020
  19. [19] A.A. Klimowicz: Formation theory in locally finite groups (to appear). Zbl0304.20020MR384936
  20. [20] A.A. Klimowicz: Sylow structure and basis normalizers in a class of locally finite groups (to appear). Zbl0356.20033MR396757
  21. [21] A.G. Kuroš: Theory of groups vol. 2, translated by K.A. Hirsch.Chelsea, New York1956. MR80089
  22. [22] J.-P. Serre: Groupes proalgébriques. Publ. Math. I.H.E.S. 7 (1960) 341-403. Zbl0097.35901MR118722
  23. [23] L.A. Simonjan: Two radicals of Lie algebras. Dokl. Akad. Nauk. SSSR157 (1964) 281-283; Soviet Math. Doklady5 (1964) 941-944. Zbl0136.30403MR163936
  24. [24] I.N. Stewart: The minimal condition for subideals of Lie algebras. Math. Z.111 (1969) 301-310. Zbl0179.33203MR251093
  25. [25] I.N. Stewart: An algebraic treatment of Mal'cev's theorems concerning nilpotent Lie groups and their Lie algebras. Compositio Math.22 (1970) 289-312. Zbl0204.35903MR288158
  26. [26] I.N. Stewart: Structure theorems for a class of locally finite Lie algebras. Proc. London Math. Soc (3) 24 (1972) 79-100. Zbl0225.17005MR289592
  27. [27] I.N. Stewart: Levi factors of infinite-dimensional Lie algebras. J. London Math. Soc. (2) 5 (1972) 488. Zbl0249.17013MR323851
  28. [28] I.N. Stewart : Author-abstract of [26]. Zbl. 225 (1972) 109. Zbl0225.17005
  29. [29] I.N. Stewart: Chevalley-Jordan decomposition for a class of locally finite Lie algebras (to appear). Zbl0351.17013
  30. [30] I.N. Stewart: Cartan subalgebras of certain locally finite Lie algebras (to appear). 
  31. [31] I.N. Stewart: The Wedderburn-Mal'cev theorems in a locally finite setting (to appear). Zbl0326.16020
  32. [32] E.L. Stitzinger: Theorems on Cartan subalgebras like some on Carter subgroups. Trans. Amer. Math. Soc.159 (1971) 307-315. Zbl0238.17009MR280556
  33. [33] S.E. Stonehewer: Abnormal subgroups of a class of periodic locally soluble groups. Proc. London Math. Soc. (3) 14 (1964) 520-536. Zbl0123.24902MR165012
  34. [34] S.E. Stonehewer: Locally soluble FC-groups. Arch. der Math.16 (1965) 158-177. Zbl0135.04803MR179263
  35. [35] S.E. Stonehewer: Formations and a class of locally soluble groups. Proc. Cambridge Philos. Soc.62 (1966) 613-635. Zbl0145.02503MR204529
  36. [36] M.J. Tomkinson: Formations of locally soluble FC-groups. Proc. London Math. Soc. (3) 19 (1969) 675-708. Zbl0179.32302MR260881
  37. [37] D.A. Towers: A Frattini theory for algebras. Proc. London Math. Soc. (3) 27 (1973) 440-462. Zbl0267.17004MR427393
  38. [38] W. Tuck: Frattini theory for Lie algebras. Ph.D. thesis, University of Sydney1969. 
  39. [39] B.A.F. Wehrfritz: Soluble periodic linear groups. Proc. London Math. Soc. (3) 18 (1968) 141-157. Zbl0157.06002MR220842
  40. [40] D.J. Winter: Abstract Lie algebras. M.I.T. Press, Cambridge Massachusetts1972. Zbl0248.17003MR332905

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.