Paracompactness and the Lindelöf property in finite and countable cartesian products

Ernest A. Michael

Compositio Mathematica (1971)

  • Volume: 23, Issue: 2, page 199-214
  • ISSN: 0010-437X

How to cite

top

Michael, Ernest A.. "Paracompactness and the Lindelöf property in finite and countable cartesian products." Compositio Mathematica 23.2 (1971): 199-214. <http://eudml.org/doc/89084>.

@article{Michael1971,
author = {Michael, Ernest A.},
journal = {Compositio Mathematica},
language = {eng},
number = {2},
pages = {199-214},
publisher = {Wolters-Noordhoff Publishing},
title = {Paracompactness and the Lindelöf property in finite and countable cartesian products},
url = {http://eudml.org/doc/89084},
volume = {23},
year = {1971},
}

TY - JOUR
AU - Michael, Ernest A.
TI - Paracompactness and the Lindelöf property in finite and countable cartesian products
JO - Compositio Mathematica
PY - 1971
PB - Wolters-Noordhoff Publishing
VL - 23
IS - 2
SP - 199
EP - 214
LA - eng
UR - http://eudml.org/doc/89084
ER -

References

top
  1. A. Arhangel'skiĭ [1] Mappings and spaces, Uspehi Mat. Nauk21 (1966), 133-184(= Russian Math. Surveys21 (1966), 115-162). Zbl0171.43603MR227950
  2. E.S. Berney [2] A regular Lindelöf semi-metric space which has no countable network, Proc. Amer. Math. Soc.26 (1970), 361-364. Zbl0198.55602MR270336
  3. J. Dieudonné [3] Un critère de normalité pour les espaces produits, Coll. Math.6 (1958), 29-32. Zbl0086.15604MR103449
  4. J. Dugundji [4] Topology, Allyn and Bacon, 1966. Zbl0144.21501MR193606
  5. R.W. Heath [5] On certain first-countable spaces, Topology Seminar Wisconsin1965 (Ann. of Math. Studies60) 103-113. Zbl0147.41603
  6. R.W. Heath AND E. Michael [6] A property of the Sorgenfrey line, Comp. Math.23 (1971), 185-188. Zbl0219.54033MR287515
  7. M. Hedriksen, J.R. Isbell, AND D.G. Johnson [7] Residue class fields of lattice ordered algebras, Fund. Math.50 (1961), 107-117. Zbl0101.33401MR133350
  8. F.B. Jones [8] Concerning normal and completely normal spaces, Bull. Amer. Math. Soc.43 (1937), 671-677. Zbl0017.42902JFM63.1171.03
  9. M. Katĕtov [9] Complete normality of cartesian products, Fund, Math.35 (1948), 271-274. Zbl0031.28301MR27501
  10. E. Michael [10] The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc.69 (1963), 375-376. Zbl0114.38904MR152985
  11. E. Michael [11] N0-spaces, J. Math. Mech.15 (1966), 983-1002. Zbl0148.16701
  12. K. Nagami [12] Σ-spaces, Fund. Math.65 (1969), 169-192. Zbl0181.50701
  13. N. Noble [13] Products with closed projections II, to appear. Zbl0233.54004MR283749
  14. A. Okuyama [14] Some generalizations of metric spaces, their metrization theorems and product spaces, Sci. Rep. Tokyo Kyoiku Daigaku Sect.A9 (1968), 236-254. Zbl0153.52404MR230283
  15. A. Okuyama [15] σ-spaces and closed mappings, Proc. Japan Acad.44 (1968), 472-477. Zbl0165.56502
  16. R.H. Sorgenfrey [16] On the topological product of paracompact spaces, Bull. Amer. Math. Soc53 (1947), 631-632. Zbl0031.28302MR20770
  17. A.H. Stone [17] Paracompactness and product spaces, Bull. Amer. Math. Soc.54 (1948), 977-982. Zbl0032.31403MR26802

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.