Paracompactness and the Lindelöf property in finite and countable cartesian products

Ernest A. Michael

Compositio Mathematica (1971)

  • Volume: 23, Issue: 2, page 199-214
  • ISSN: 0010-437X

How to cite

top

Michael, Ernest A.. "Paracompactness and the Lindelöf property in finite and countable cartesian products." Compositio Mathematica 23.2 (1971): 199-214. <http://eudml.org/doc/89084>.

@article{Michael1971,
author = {Michael, Ernest A.},
journal = {Compositio Mathematica},
language = {eng},
number = {2},
pages = {199-214},
publisher = {Wolters-Noordhoff Publishing},
title = {Paracompactness and the Lindelöf property in finite and countable cartesian products},
url = {http://eudml.org/doc/89084},
volume = {23},
year = {1971},
}

TY - JOUR
AU - Michael, Ernest A.
TI - Paracompactness and the Lindelöf property in finite and countable cartesian products
JO - Compositio Mathematica
PY - 1971
PB - Wolters-Noordhoff Publishing
VL - 23
IS - 2
SP - 199
EP - 214
LA - eng
UR - http://eudml.org/doc/89084
ER -

References

top
  1. A. Arhangel'skiĭ [1] Mappings and spaces, Uspehi Mat. Nauk21 (1966), 133-184(= Russian Math. Surveys21 (1966), 115-162). Zbl0171.43603MR227950
  2. E.S. Berney [2] A regular Lindelöf semi-metric space which has no countable network, Proc. Amer. Math. Soc.26 (1970), 361-364. Zbl0198.55602MR270336
  3. J. Dieudonné [3] Un critère de normalité pour les espaces produits, Coll. Math.6 (1958), 29-32. Zbl0086.15604MR103449
  4. J. Dugundji [4] Topology, Allyn and Bacon, 1966. Zbl0144.21501MR193606
  5. R.W. Heath [5] On certain first-countable spaces, Topology Seminar Wisconsin1965 (Ann. of Math. Studies60) 103-113. Zbl0147.41603
  6. R.W. Heath AND E. Michael [6] A property of the Sorgenfrey line, Comp. Math.23 (1971), 185-188. Zbl0219.54033MR287515
  7. M. Hedriksen, J.R. Isbell, AND D.G. Johnson [7] Residue class fields of lattice ordered algebras, Fund. Math.50 (1961), 107-117. Zbl0101.33401MR133350
  8. F.B. Jones [8] Concerning normal and completely normal spaces, Bull. Amer. Math. Soc.43 (1937), 671-677. Zbl0017.42902JFM63.1171.03
  9. M. Katĕtov [9] Complete normality of cartesian products, Fund, Math.35 (1948), 271-274. Zbl0031.28301MR27501
  10. E. Michael [10] The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc.69 (1963), 375-376. Zbl0114.38904MR152985
  11. E. Michael [11] N0-spaces, J. Math. Mech.15 (1966), 983-1002. Zbl0148.16701
  12. K. Nagami [12] Σ-spaces, Fund. Math.65 (1969), 169-192. Zbl0181.50701
  13. N. Noble [13] Products with closed projections II, to appear. Zbl0233.54004MR283749
  14. A. Okuyama [14] Some generalizations of metric spaces, their metrization theorems and product spaces, Sci. Rep. Tokyo Kyoiku Daigaku Sect.A9 (1968), 236-254. Zbl0153.52404MR230283
  15. A. Okuyama [15] σ-spaces and closed mappings, Proc. Japan Acad.44 (1968), 472-477. Zbl0165.56502
  16. R.H. Sorgenfrey [16] On the topological product of paracompact spaces, Bull. Amer. Math. Soc53 (1947), 631-632. Zbl0031.28302MR20770
  17. A.H. Stone [17] Paracompactness and product spaces, Bull. Amer. Math. Soc.54 (1948), 977-982. Zbl0032.31403MR26802

NotesEmbed ?

top

You must be logged in to post comments.