On the structure of Hilbert cube manifolds

T. A. Chapman

Compositio Mathematica (1972)

  • Volume: 24, Issue: 3, page 329-353
  • ISSN: 0010-437X

How to cite

top

Chapman, T. A.. "On the structure of Hilbert cube manifolds." Compositio Mathematica 24.3 (1972): 329-353. <http://eudml.org/doc/89125>.

@article{Chapman1972,
author = {Chapman, T. A.},
journal = {Compositio Mathematica},
language = {eng},
number = {3},
pages = {329-353},
publisher = {Wolters-Noordhoff Publishing},
title = {On the structure of Hilbert cube manifolds},
url = {http://eudml.org/doc/89125},
volume = {24},
year = {1972},
}

TY - JOUR
AU - Chapman, T. A.
TI - On the structure of Hilbert cube manifolds
JO - Compositio Mathematica
PY - 1972
PB - Wolters-Noordhoff Publishing
VL - 24
IS - 3
SP - 329
EP - 353
LA - eng
UR - http://eudml.org/doc/89125
ER -

References

top
  1. R.D. Anderson [1] On sigma-compact subsets of infinite-dimensional spaces, Trans. Amer. Math. Soc. (to appear). 
  2. R.D. Anderson And R.H. Bing [2] A complete elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc.74 (1968), 771-792. Zbl0189.12402MR230284
  3. R.D. Anderson And T.A. Chapman [3] Extending homeomorphisms to Hilbert cube manifolds, Pac. J. of Math.38 (1971), 281-293. Zbl0227.57004MR319204
  4. R.D. Anderson AND R. Schori [4] A factor theorem for Fréchet manifolds, Bull. Amer. Math. Soc., 75 (1969), 53-56. Zbl0195.53601MR233382
  5. [5] Factors of infinite-dimensional manifolds, Trans. Amer. Math. Soc.142 (1969), 315-330. Zbl0187.20505MR246327
  6. T.A. Chapman [6] Dense sigma-compact subsets of infinite-dimensional manifolds, Trans. Amer. Math. Soc.154 (1971), 399-426. Zbl0208.51903MR283828
  7. William H. Cutler [7] Deficiency in F-manifolds, preprint. Zbl0236.57004MR298710
  8. D.W. Henderson [8] Open subsets of Hilbert space, Compositio Math.21 (1969), 312-318. Zbl0179.52102MR251748
  9. D.W. Henderson [9] Infinite-dimensional manifolds are open subsets of Hilbert space, Bull. Amer. Math. Soc.75 (1969), 759-762. Zbl0179.29101MR247634
  10. D.W. Henderson And R. Schori [10] Topological classification of infinite-dimensional manifolds by homotopy type, Bull. Amer. Math. Soc.76 (1969), 121-124. Zbl0194.55602MR251749
  11. J. Milnor [11] On spaces having the homotopy of a CW-complex, Trans. Amer. Math. Soc.90 (1959), 272-280. Zbl0084.39002MR100267
  12. R.S. Palais [12] Homotopy theory of infinite-dimensional manifolds, Topology5 (1966), 1-16. Zbl0138.18302MR189028
  13. D.E. Sanderson [13] An infinite-dimensional Schoenflies theorem, Trans. Amer. Math. Soc.148 (1970), 33-39. Zbl0194.55603MR259957
  14. E.H. Spanier [14] Algebraic topology, McGraw-Hill, New York, 1966. Zbl0145.43303MR210112
  15. James E. West [15] Infinite products which are Hilbert cubes, Trans. Amer. Math. Soc.150 (1970), 1-25. Zbl0198.56001MR266147
  16. J.H.C. Whitehead [16] Simplicial spaces, nuclei, and m-groups, Proc. Lond. Math. Soc. (2) 45 (1939), 243-327. Zbl0022.40702JFM65.1443.01
  17. R.Y.T. Wong [17] Extending homeomorphisms by means of collarings, Proc. Amer. Math. Soc.19 (1968), 1443-1447. Zbl0169.54303MR234430

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.