Page 1 Next

Displaying 1 – 20 of 41

Showing per page

A generalization of Steenrod’s approximation theorem

Christoph Wockel (2009)

Archivum Mathematicum

In this paper we aim for a generalization of the Steenrod Approximation Theorem from [16, Section 6.7], concerning a smoothing procedure for sections in smooth locally trivial bundles. The generalization is that we consider locally trivial smooth bundles with a possibly infinite-dimensional typical fibre. The main result states that a continuous section in a smooth locally trivial bundles can always be smoothed out in a very controlled way (in terms of the graph topology on spaces of continuous...

Central extensions of infinite-dimensional Lie groups

Karl-Hermann Neeb (2002)

Annales de l’institut Fourier

The main result of the present paper is an exact sequence which describes the group of central extensions of a connected infinite-dimensional Lie group G by an abelian group Z whose identity component is a quotient of a vector space by a discrete subgroup. A major point of this result is that it is not restricted to smoothly paracompact groups and hence applies in particular to all Banach- and Fréchet-Lie groups. The exact sequence encodes in particular precise obstructions for a given Lie algebra...

Currently displaying 1 – 20 of 41

Page 1 Next