Une caractérisation de la dimension d'un faisceau analitique cohérent

Constantin Bănică

Compositio Mathematica (1972)

  • Volume: 25, Issue: 1, page 101-108
  • ISSN: 0010-437X

How to cite

top

Bănică, Constantin. "Une caractérisation de la dimension d'un faisceau analitique cohérent." Compositio Mathematica 25.1 (1972): 101-108. <http://eudml.org/doc/89128>.

@article{Bănică1972,
author = {Bănică, Constantin},
journal = {Compositio Mathematica},
language = {fre},
number = {1},
pages = {101-108},
publisher = {Wolters-Noordhoff Publishing},
title = {Une caractérisation de la dimension d'un faisceau analitique cohérent},
url = {http://eudml.org/doc/89128},
volume = {25},
year = {1972},
}

TY - JOUR
AU - Bănică, Constantin
TI - Une caractérisation de la dimension d'un faisceau analitique cohérent
JO - Compositio Mathematica
PY - 1972
PB - Wolters-Noordhoff Publishing
VL - 25
IS - 1
SP - 101
EP - 108
LA - fre
UR - http://eudml.org/doc/89128
ER -

References

top
  1. A. Andreotti Et H. Grauert [1 ] Théorèmes de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. France90, 193-259 (1962). Zbl0106.05501MR150342
  2. A. Andreotti AND A. Kas [2] Serre duality on complex analytic spaces. Rend. Acc. Naz. Lincei. (Avril 1971). Zbl0234.32010MR311942
  3. C. Bănică ET O. Stănăşilă [3] Sur la profondeur d'un faisceau analytique cohérent sur un espace de Stein. Séminaire d'espaces analytiques. Bucarest sept. 1969 et C. R. Acad. Sc. Paris269, 636-639 (1969). Zbl0182.11103MR254270
  4. [4] Some results on the extension of analytic entities defined out of a compact. Annali della Sc. Norm. Sup. Pisa, Vol. XXV, Fasc. II, (1971). Zbl0245.32004
  5. O. Forster [5] Zur Theorie der Steinschen Algebren und Moduln. Math. Z.97, 376-405 (1967). Zbl0148.32203MR213611
  6. A. Grothendieck [6] Cohomologie locale des faiseaux cohérents (SGA2), North-Holland Publishing Company-Amsterdam, (1968). Zbl0197.47202
  7. R. Harvey [7 ] The theorie of hyperfunctions on totally real subsets of a complex manifold with applications to extension problem. Amer. Journal of Math. XCI, 4, October (1969). Zbl0202.36602MR257400
  8. M. Jurchescu [8] On the canonical topology of an analytic algebra and of an analytic module. Bull. Soc. Math. France93, 129-153 (1965). Zbl0147.01702MR197774
  9. H.J. Reiffen [9] Riemannsche Hebbarkeitssätze für Cohomologieklassen mit kompakten Trägern. Math. Ann.164 (1966), 272-279. Zbl0142.41102MR197779
  10. P. Samuel [10] Séminaire d'algèbre commutative1966/ 1967. Zbl0157.08301
  11. J.P. Serre [11] Algèbre locale, Multiplicités. Lecture Notes in Math., 11, Springer -Berlin (1965). Zbl0142.28603MR201468
  12. Y.T. Siu [12] Analytic sheaf cohomology with compact supports. Comp. Math.21 (1969), 52-58. Zbl0175.37401MR243115

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.