On a new method in intuitionist linear analysis

Sahab Lal Shukla

Compositio Mathematica (1973)

  • Volume: 26, Issue: 3, page 181-202
  • ISSN: 0010-437X

How to cite

top

Shukla, Sahab Lal. "On a new method in intuitionist linear analysis." Compositio Mathematica 26.3 (1973): 181-202. <http://eudml.org/doc/89163>.

@article{Shukla1973,
author = {Shukla, Sahab Lal},
journal = {Compositio Mathematica},
language = {eng},
number = {3},
pages = {181-202},
publisher = {Noordhoff International Publishing},
title = {On a new method in intuitionist linear analysis},
url = {http://eudml.org/doc/89163},
volume = {26},
year = {1973},
}

TY - JOUR
AU - Shukla, Sahab Lal
TI - On a new method in intuitionist linear analysis
JO - Compositio Mathematica
PY - 1973
PB - Noordhoff International Publishing
VL - 26
IS - 3
SP - 181
EP - 202
LA - eng
UR - http://eudml.org/doc/89163
ER -

References

top
  1. L.E.J. Brouwer [1] Points and spaces. Can. J. Math.6, 1-17 (1954). Zbl0055.04601MR59866
  2. A. Heyting [2] Intuitionism, an introduction. Amsterdam1966. Zbl0125.00510MR221911
  3. A. Heyting [3] Note on the Riesz-Fischer theorem. Proc. Kon. Ned. Ak. v. Wet. ser.A, 5435-40 (1951). Zbl0043.29101MR40251
  4. A. Heyting [4] Espaces de Hilbert et intuitionnisme, Colloque internationaux du C.N.R.S.Paris1953, 59-63. Zbl0053.00701MR56545
  5. A. Heyting [5] Intuïtionistische theorie der Hilbert-ruimten. (Unpublished lecture notes in Netherlandish. Amsterdam, 1949-50). 
  6. Ashvini Kumar [6] Hilbert spaces in intuitionism-Hilbertaj spacoj en intuiciismo. Thesis. Amsterdam, 1966. 
  7. Ashvini Kumar [7] Über Katalogisierte Räume. Comp. Math.21, 431-456 (1970). Zbl0215.32103MR258595
  8. Ashvini Kumar [8] On the intuitionist theory of Stieltjes integration and its applications. Proc. Kon. Ned. Ak. v. Wet. ser.A, 73, 62-76, (1970). Zbl0201.01204MR259061
  9. Ashvini Kumar [9] On Brouwer-Stieltjes integration. Proc. Kon. Ned. Ak. v. Wet. ser.A, 73, 161-171 (1970). Zbl0216.00702MR262433
  10. Ashvini Kumar [10] A note on quasi-numbers. (To appear.) 
  11. Ashvini Kumar and S.L. Shukla [11] Intuitionist determination of dual spaces of certain catalogued linear spaces. I., II. Proc. Kon. Ned. Ak. v. Wet. ser.A, 74, no. 3 (1971). Zbl0215.19403MR288546
  12. S.L. Shukla [12] On intuitionist analogues of classically inseparable spaces. (To appear.) Zbl0248.02034MR305031
  13. S.L. Shukla [13] On some linear spaces which coincide classically but are different intuitionistically. (To appear.) Zbl0248.02035MR305032
  14. S.L. Shukla [14] Intuitionist treatment of sequence spaces satisfying a condition of convergence, or absolute convergence or their analogues and related spaces. (To appear.) 
  15. E. Bishop [15] Foundations of constructive analysis, New York. 1967. Zbl0183.01503MR221878
  16. J.D. Hill [16] On the space (y) of convergent series, Tôhoku math. J.45, 332-337 (1939). Zbl0021.11801JFM65.0225.03
  17. G.H. Hardy [17] Divergent series, Oxford, 1949. Zbl0032.05801MR30620
  18. G. Köthe [18] Topologische lineare Räume I., BerlinGöttingen-Heidelberg1960. Zbl0093.11901MR130551
  19. L.V. Kantorovich and G.P. Akilov [19] Functional analysis in normed spaces. Oxford -LondonNew York etc. 1964. (Translated from the Russian 'Funktoional'nyi analiz v normirovannykh prostranstvakh, Moscow1959). Zbl0127.06104MR119071
  20. F. Riesz and B. Sz. Nagy [20] Leçons d'analyse fonctionnelle. Budapest1953. Zbl0051.08403

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.