The first eigenvalue of the laplacian on manifolds of non-negative curvature

Isaac Chavel; Edgar A. Feldman

Compositio Mathematica (1974)

  • Volume: 29, Issue: 1, page 43-53
  • ISSN: 0010-437X

How to cite

top

Chavel, Isaac, and Feldman, Edgar A.. "The first eigenvalue of the laplacian on manifolds of non-negative curvature." Compositio Mathematica 29.1 (1974): 43-53. <http://eudml.org/doc/89222>.

@article{Chavel1974,
author = {Chavel, Isaac, Feldman, Edgar A.},
journal = {Compositio Mathematica},
language = {eng},
number = {1},
pages = {43-53},
publisher = {Noordhoff International Publishing},
title = {The first eigenvalue of the laplacian on manifolds of non-negative curvature},
url = {http://eudml.org/doc/89222},
volume = {29},
year = {1974},
}

TY - JOUR
AU - Chavel, Isaac
AU - Feldman, Edgar A.
TI - The first eigenvalue of the laplacian on manifolds of non-negative curvature
JO - Compositio Mathematica
PY - 1974
PB - Noordhoff International Publishing
VL - 29
IS - 1
SP - 43
EP - 53
LA - eng
UR - http://eudml.org/doc/89222
ER -

References

top
  1. [1] M. Berger: Geodesics in Riemannian Geometry. Tata Inst., Bombay, 1965. Zbl0165.55601MR215258
  2. [2] M. Berger: Sue les premières valeurs propres des variétés riemannienes. Compositio Math., 26 (1973) 129-149. Zbl0257.53048MR316913
  3. [3] M. Berger, P. Gauduchon, E. Mazet: Le Spectre d'une Variété Riemanniene. Lecture Notes in Math., Springer-Verlag, 1971. [4] Zbl0223.53034MR282313
  4. [4] L. Bers, F. Johns and M. Schechter: Partial Differential Equations. Interscience Publishers, 1964. Zbl0126.00207MR163043
  5. [5] R. Bishop and R. Crittenden: Geometry of Manifolds. Academic Press, 1964. Zbl0132.16003MR169148
  6. [6] J. Cheeger: The relation between the Laplacian and diameter for manifolds of non-negative curvature. Archiv der Math., 19 (1968) 558-560. Zbl0177.50201MR238227
  7. [7] H. Courant and D. Hilbert: Methods of Mathematical Physics. Vol. 1, Interscience Publishers, 1953. Zbl0051.28802
  8. [8] N. Grossman: Two applications of the technique of length-decreasing variations. Proc. A.M.S., 18 (1967) 327-333. Zbl0168.42902MR210048
  9. [9] N. Grossman: The volume of a totally geodesic hypersurface in a pinched manifold. Pac. J. Math., 23 (1967) 257-262. Zbl0158.40201MR220221
  10. [10] J. Hersch: Quatre propriétés isoperimétriques de membranes sphérique homogènes. C.R.A.S., 270 (1970) 1645-1648. Zbl0224.73083MR292357
  11. [11] W. Klingenberg: Contributions to Riemannian geometry in the large. Ann. of Math., 69 (1959) 654-666. Zbl0133.15003MR105709
  12. [12] H. Poincare: Sur les lignes géodesiques des surfaces convexes. Trans. A.M.S., 5 (1905) 237-274. Zbl36.0669.01MR1500710JFM36.0669.01
  13. [13] W.T. Reid: A comparison theorem for self-adjoint differential equations of second order. Ann. of Math., 65 (1957) 197-202. Zbl0077.08604MR92045
  14. [14] G.N. Watson: A Treatise on the Theory of Bessel Functions. Cambridge University Press, 1944; MacMillan, 1944. Zbl0063.08184MR10746

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.