The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The first eigenvalue of the laplacian on manifolds of non-negative curvature”

De Lellis-Topping type inequalities for f-Laplacians

Guangyue Huang, Fanqi Zeng (2016)

Studia Mathematica

Similarity:

We establish an integral geometric inequality on a closed Riemannian manifold with ∞-Bakry-Émery Ricci curvature bounded from below. We also obtain similar inequalities for Riemannian manifolds with totally geodesic boundary. In particular, our results generalize those of Wu (2014) for the ∞-Bakry-Émery Ricci curvature.

Riemannian manifolds in which certain curvature operator has constant eigenvalues along each helix

Yana Alexieva, Stefan Ivanov (1999)

Archivum Mathematicum

Similarity:

Riemannian manifolds for which a natural skew-symmetric curvature operator has constant eigenvalues on helices are studied. A local classification in dimension three is given. In the three dimensional case one gets all locally symmetric spaces and all Riemannian manifolds with the constant principal Ricci curvatures r 1 = r 2 = 0 , r 3 0 , which are not locally homogeneous, in general.