Some linear topological properties of the spaces C p of operators on Hilbert space

J. Arazy; J. Lindenstrauss

Compositio Mathematica (1975)

  • Volume: 30, Issue: 1, page 81-111
  • ISSN: 0010-437X

How to cite


Arazy, J., and Lindenstrauss, J.. "Some linear topological properties of the spaces $C_p$ of operators on Hilbert space." Compositio Mathematica 30.1 (1975): 81-111. <>.

author = {Arazy, J., Lindenstrauss, J.},
journal = {Compositio Mathematica},
language = {eng},
number = {1},
pages = {81-111},
publisher = {Noordhoff International Publishing},
title = {Some linear topological properties of the spaces $C_p$ of operators on Hilbert space},
url = {},
volume = {30},
year = {1975},

AU - Arazy, J.
AU - Lindenstrauss, J.
TI - Some linear topological properties of the spaces $C_p$ of operators on Hilbert space
JO - Compositio Mathematica
PY - 1975
PB - Noordhoff International Publishing
VL - 30
IS - 1
SP - 81
EP - 111
LA - eng
UR -
ER -


  1. [1] N. Dunford and J.T. Schwartz: Linear Operators II. New York, 1963. Zbl0128.34803MR188745
  2. [2] Y. Friedman: Subspaces of LC(H) and Cp. (to appear) 
  3. [3] B.R. Gelbaum and J. Gil De Lamadrid: Bases of Tensor products of Banach spaces. Pacific J. Math.11 (1961) 1281-1286. Zbl0106.08604MR147881
  4. [4] I.C. Gohberg and M.G. Krein: Introduction to the theory of linear non-self-adjoint operators (translated from Russian). Amer. Math. Soc. 1969. Zbl0181.13504MR246142
  5. [5] I.C. Gohberg and M.G. Krein: Theory and applications of Volterra operators in Hilbert spaces (translated from Russian). Amer. Math. Soc. Zbl0194.43804MR264447
  6. [6] Y. Gordon and D.R. Lewis: Absolutely summing operators and local unconditional structure. Acta Math. (to appear) Zbl0291.47017MR410341
  7. [7] M. Hall, Jr.: Combinatorial theory. Waltham, Mass.1967. Zbl0196.02401MR224481
  8. [8] J.R. Holub: On subspaces of norm ideals. Bull. Amer. Math. Soc.79 (1973) 446-448. Zbl0257.46105MR313880
  9. [9] W.B. Johnson and E. Odell: Subspaces of Lp which embed in lp. Compositio Math. 28 (1974) 37-49. Zbl0282.46020MR352938
  10. [10] M.I. Kadec and A. Pelczynski: Bases, Lacunary sequences and complemented subspaces in the spaces Lp. Studia Math. 21 (1962) 161-176. Zbl0102.32202
  11. [11] S. Kwapien and A. Pelczynski: The main triangle projection in matrix spaces and its applications. Studia Math.34 (1970) 43-68. Zbl0189.43505MR270118
  12. [12] J. Lindenstrauss and A. Pelczynski: Contribution to the theory of the classical Banach spaces. J. Functional Anal.8 (1971) 225-249. Zbl0224.46041MR291772
  13. [13] J. Lindenstrauss and L. Tzafriri: Classical Banach spaces. Springer Lecture Notes338, 1973. Zbl0259.46011MR415253
  14. [14] V.I. Macaev: Volterra operators produced by perturbation of self-adjoint operators. Soviet Math.2 (1961) 1013-1016. Zbl0119.32202
  15. [15] Ch. A. Mccarthy: Cp. Israel J. Math.5 (1967) 249-271. Zbl0156.37902MR225140
  16. [16] N. Tomczak-Jaegermann: The moduli of smoothness and convexity and the Rademacher averages of trace classes Sp, 1 ≤ p &lt; ∞. Studia Math. (to appear) Zbl0282.46016
  17. [17] P. Wytaszczyk: On complemented subspaces and unconditional bases in lp+lq. Studia Math.47 (1973) 197-206. Zbl0267.46010MR338744

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.