### A Relation between Diagonal and Unconditional Basis Constants.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

In the normed space of bounded operators between a pair of normed spaces, the set of operators which are "bounded below" forms the interior of the set of one-one operators. This note is concerned with the extension of this observation to certain spaces of pairs of operators.

We study Banach spaces X with subspaces Y whose unit ball is densely remotal in X. We show that for several classes of Banach spaces, the unit ball of the space of compact operators is densely remotal in the space of bounded operators. We also show that for several classical Banach spaces, the unit ball is densely remotal in the duals of higher even order. We show that for a separable remotal set E ⊆ X, the set of Bochner integrable functions with values in E is a remotal set in L¹(μ,X).

Characterizations of pairs (E,F) of complete (LF)?spaces such that every continuous linear map from E to F maps a 0?neighbourhood of E into a bounded subset of F are given. The case of sequence (LF)?spaces is also considered. These results are similar to the ones due to D. Vogt in the case E and F are Fréchet spaces. The research continues work of J. Bonet, A. Galbis, S. Önal, T. Terzioglu and D. Vogt.

We investigate the relationships between strongly extreme, complex extreme, and complex locally uniformly rotund points of the unit ball of a symmetric function space or a symmetric sequence space E, and of the unit ball of the space E(ℳ,τ) of τ-measurable operators associated to a semifinite von Neumann algebra (ℳ,τ) or of the unit ball in the unitary matrix space ${C}_{E}$. We prove that strongly extreme, complex extreme, and complex locally uniformly rotund points x of the unit ball of the symmetric...