Semi-groups of rank-preserving transformers on minimal norm ideals in ( )

E. Prugovečki; A. Tip

Compositio Mathematica (1975)

  • Volume: 30, Issue: 2, page 113-136
  • ISSN: 0010-437X

How to cite

top

Prugovečki, E., and Tip, A.. "Semi-groups of rank-preserving transformers on minimal norm ideals in $\mathcal {B} (\mathcal {H})$." Compositio Mathematica 30.2 (1975): 113-136. <http://eudml.org/doc/89249>.

@article{Prugovečki1975,
author = {Prugovečki, E., Tip, A.},
journal = {Compositio Mathematica},
language = {eng},
number = {2},
pages = {113-136},
publisher = {Noordhoff International Publishing},
title = {Semi-groups of rank-preserving transformers on minimal norm ideals in $\mathcal \{B\} (\mathcal \{H\})$},
url = {http://eudml.org/doc/89249},
volume = {30},
year = {1975},
}

TY - JOUR
AU - Prugovečki, E.
AU - Tip, A.
TI - Semi-groups of rank-preserving transformers on minimal norm ideals in $\mathcal {B} (\mathcal {H})$
JO - Compositio Mathematica
PY - 1975
PB - Noordhoff International Publishing
VL - 30
IS - 2
SP - 113
EP - 136
LA - eng
UR - http://eudml.org/doc/89249
ER -

References

top
  1. [1] R. Schatten: Norm ideals of completely continuous operators. Springer Verlag, Berlin, 1960. Zbl0090.09402MR119112
  2. [2] I.C. Gohberg and M.G. Krein: Introduction to the theory of linear non self adjoint operators. American Mathematical Society, Providence, Rhode Island, 1969. Zbl0181.13504MR246142
  3. [3] I.C. Gohberg and M.G. Krein: Theory and applications of Volterra operators in Hilbert Space. American Mathematical Society, Providence, Rhode Island, 1970. Zbl0194.43804MR264447
  4. [4] G.G. Emch: The definition of states in quantum statistical mechanics. J. Math. Phys., 7 (1966) 1413-1420, Zbl0151.44905MR207350
  5. E. Prugovečki and A. Tip: On ergodic limits of normal states. J. Math. Phys15 (1974) 275-282. MR398354
  6. [5] E. Prugovečki: Scattering theory in Fock space. J. Math. Phys.13 (1972) 969-976, MR319502
  7. E. Prugovečki: Multichannel stationary scattering theory in two Hilbert space formulation. J. Math. Phys.14 (1973) 957-962. Zbl0257.47011MR337212
  8. [6] K. Yosida: Functional Analysis. Springer Verlag, Berlin, 1966. Zbl0126.11504
  9. [7] F. Riesz and B. Sz.-Nagy: Functional Analysis. Frederick Ungar Publishing Co., New York, 1955. Zbl0732.47001MR71727
  10. [8] V. Bargmann: On unitary ray representations of continuous groups. Ann. Math.59 (1954) 1-46. Zbl0055.10304MR58601
  11. [9] V. Bargmann: Note on Wigner's theorem on symmetry operations. J. Math. Phys.5 (1964) 862-868. Zbl0141.23205MR164620
  12. [10] N. Dunford and J.T. Schwartz: Linear operators, Part III. Wiley-Interscience. New York, 1971. Zbl0635.47003MR1009164
  13. [11] J. Dixmier: Les algèbres d'opérateurs dans l'espace Hilbertien. Gauthier-Villars, Paris, 1969. Zbl0175.43801
  14. [12] W.G. Bade: Unbounded spectral operators. Pacific J. Math.4 (1954) 373-392. Zbl0056.34801MR63566
  15. [13] E. Berkson and H.R. Dowson: Prespectral operators. Illinois J. Math.13 (1969) 291-315. Zbl0175.43402MR250095
  16. [14] J.H. Anderson and C. Foias: On Normal derivation II (to appear). 
  17. [15] S.R. Foguel: Sums and products of commuting spectral operators. Ark. Math.3 (1958) 449-461. Zbl0081.12301MR104154
  18. [16] C.A. Mccarthy: Cp. Israel J. Math.5 (1967) 249-271. Zbl0156.37902MR225140

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.