On the homotopy groups of some equivariant automorphism groups of spheres

Dieter Erle

Compositio Mathematica (1975)

  • Volume: 31, Issue: 2, page 229-234
  • ISSN: 0010-437X

How to cite


Erle, Dieter. "On the homotopy groups of some equivariant automorphism groups of spheres." Compositio Mathematica 31.2 (1975): 229-234. <http://eudml.org/doc/89272>.

author = {Erle, Dieter},
journal = {Compositio Mathematica},
language = {eng},
number = {2},
pages = {229-234},
publisher = {Noordhoff International Publishing},
title = {On the homotopy groups of some equivariant automorphism groups of spheres},
url = {http://eudml.org/doc/89272},
volume = {31},
year = {1975},

AU - Erle, Dieter
TI - On the homotopy groups of some equivariant automorphism groups of spheres
JO - Compositio Mathematica
PY - 1975
PB - Noordhoff International Publishing
VL - 31
IS - 2
SP - 229
EP - 234
LA - eng
UR - http://eudml.org/doc/89272
ER -


  1. [1] Browder, W.: Torsion in H-spaces. Ann. Math.74 (1961), 24-51. Zbl0112.14501MR124891
  2. [2] Burghelea, D.: On the homotopy type of Diff (Mn) and connected problems. Mimeographed manuscript. 
  3. [2a] Cerf, J.: Sur les difféomorphismes de la sphère de dimension trois. Springer Lect. Notes in Math. No. 53, Berlin1968. Zbl0164.24502MR229250
  4. [3] Erle, D.: Some non-linear equivariant sphere bundles. Comm. Math. Helv.48 (1973), 498-510. Zbl0267.55019MR339168
  5. [4] Erle, D. and Hsiang, W.C.: On certain unitary and symplectic actions with three orbit types. Amer. J. Math.94 (1972), 289-308. Zbl0239.57021MR305428
  6. [5] Hsiang, W.C. and Hsiang, W.Y.: Differentiable actions of compact connected classical groupsI. Amer. J. Math.89 (1967), 705-786. Zbl0184.27204MR217213
  7. [6] Jänich, K.: Differenzierbare Mannigfaltigkeiten mit Rand als Orbiträume differenzierbarer G-Mannigfaltigkeiten ohne Rand. Topology5 (1966), 301-320. Zbl0153.53703MR202157
  8. [7] Jänich, K.: Differenzierbare G-Mannigfaltigkeiten. Springer Lect. Notes in Math. No. 59, Berlin1968. Zbl0159.53701MR229261
  9. [8] Mimura, M. and Toda, H.: Homotopy groups of SU(3), SU(4) and Sp(2). J. Math. Kyoto Univ.3 (1964), 217-250. Zbl0129.15404MR169242
  10. [9] Steenrod, N.: The topology of fibre bundles. Princeton Univ. Press. Princeton, N.J., 1951. Zbl0054.07103MR39258

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.