On the homotopy groups of some equivariant automorphism groups of spheres
Compositio Mathematica (1975)
- Volume: 31, Issue: 2, page 229-234
- ISSN: 0010-437X
Access Full Article
topHow to cite
topErle, Dieter. "On the homotopy groups of some equivariant automorphism groups of spheres." Compositio Mathematica 31.2 (1975): 229-234. <http://eudml.org/doc/89272>.
@article{Erle1975,
author = {Erle, Dieter},
journal = {Compositio Mathematica},
language = {eng},
number = {2},
pages = {229-234},
publisher = {Noordhoff International Publishing},
title = {On the homotopy groups of some equivariant automorphism groups of spheres},
url = {http://eudml.org/doc/89272},
volume = {31},
year = {1975},
}
TY - JOUR
AU - Erle, Dieter
TI - On the homotopy groups of some equivariant automorphism groups of spheres
JO - Compositio Mathematica
PY - 1975
PB - Noordhoff International Publishing
VL - 31
IS - 2
SP - 229
EP - 234
LA - eng
UR - http://eudml.org/doc/89272
ER -
References
top- [1] Browder, W.: Torsion in H-spaces. Ann. Math.74 (1961), 24-51. Zbl0112.14501MR124891
- [2] Burghelea, D.: On the homotopy type of Diff (Mn) and connected problems. Mimeographed manuscript.
- [2a] Cerf, J.: Sur les difféomorphismes de la sphère de dimension trois. Springer Lect. Notes in Math. No. 53, Berlin1968. Zbl0164.24502MR229250
- [3] Erle, D.: Some non-linear equivariant sphere bundles. Comm. Math. Helv.48 (1973), 498-510. Zbl0267.55019MR339168
- [4] Erle, D. and Hsiang, W.C.: On certain unitary and symplectic actions with three orbit types. Amer. J. Math.94 (1972), 289-308. Zbl0239.57021MR305428
- [5] Hsiang, W.C. and Hsiang, W.Y.: Differentiable actions of compact connected classical groupsI. Amer. J. Math.89 (1967), 705-786. Zbl0184.27204MR217213
- [6] Jänich, K.: Differenzierbare Mannigfaltigkeiten mit Rand als Orbiträume differenzierbarer G-Mannigfaltigkeiten ohne Rand. Topology5 (1966), 301-320. Zbl0153.53703MR202157
- [7] Jänich, K.: Differenzierbare G-Mannigfaltigkeiten. Springer Lect. Notes in Math. No. 59, Berlin1968. Zbl0159.53701MR229261
- [8] Mimura, M. and Toda, H.: Homotopy groups of SU(3), SU(4) and Sp(2). J. Math. Kyoto Univ.3 (1964), 217-250. Zbl0129.15404MR169242
- [9] Steenrod, N.: The topology of fibre bundles. Princeton Univ. Press. Princeton, N.J., 1951. Zbl0054.07103MR39258
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.