Chevalley-Jordan decomposition for a class of locally finite Lie algebras

Ian Stewart

Compositio Mathematica (1976)

  • Volume: 33, Issue: 1, page 75-105
  • ISSN: 0010-437X

How to cite

top

Stewart, Ian. "Chevalley-Jordan decomposition for a class of locally finite Lie algebras." Compositio Mathematica 33.1 (1976): 75-105. <http://eudml.org/doc/89299>.

@article{Stewart1976,
author = {Stewart, Ian},
journal = {Compositio Mathematica},
language = {eng},
number = {1},
pages = {75-105},
publisher = {Noordhoff International Publishing},
title = {Chevalley-Jordan decomposition for a class of locally finite Lie algebras},
url = {http://eudml.org/doc/89299},
volume = {33},
year = {1976},
}

TY - JOUR
AU - Stewart, Ian
TI - Chevalley-Jordan decomposition for a class of locally finite Lie algebras
JO - Compositio Mathematica
PY - 1976
PB - Noordhoff International Publishing
VL - 33
IS - 1
SP - 75
EP - 105
LA - eng
UR - http://eudml.org/doc/89299
ER -

References

top
  1. [1] R.K. Amayo and I.N. StewartInfinite-dimensional Lie algebras. Noordhoff International, Leyden1974. Zbl0302.17006MR396708
  2. [2] D.W. Barnes: The Frattini argument for Lie algebras. Math. Z.133 (1973) 277-283. Zbl0253.17003MR330244
  3. [3] H. Freudenthal and H. De Vries: Linear Lie groups. Academic Press, New York and London1969. Zbl0377.22001MR260926
  4. [4] A.D. Gardiner, B. Hartley, and M.J. Tomkinson: Saturated formations and Sylow structure in locally finite groups. J. Algebra17 (1971) 177-211. Zbl0215.10605MR272897
  5. [5] B. Hartley: Locally nilpotent ideals of a Lie algebra. Proc. Cambridge Philos. Soc.63 (1967) 257-272. Zbl0147.28201MR213402
  6. [6] J.E. Humphreys: Introduction to Lie algebras and representation theory. Graduate texts in mathematics9, Springer, Berlin1972. Zbl0254.17004MR499562
  7. [7] N. Jacobson: Lie algebras. Interscience, New York1962. Zbl0121.27504MR143793
  8. [8] A.G. Kuroš: Theory of groups, vol. 2. Translated by K. A. Hirsch, Chelsea, New York1956. MR80089
  9. [9] A.I. Mal'cev: Solvable Lie algebras. Izv. Akad. Nauk SSSR9 (1945) 329-352, translated in Amer. Math. Soc. Translations Ser.1 vol. 9, Lie groups, 1962, 229-262. MR22217
  10. [10] W.R. Scott: Group theory, Prentice-Hall. Englewood Cliffs, N.J.1964. Zbl0126.04504MR167513
  11. [11] I.N. Stewart: Structure theorems for a class of locally finite Lie algebras. Proc. London Math. Soc. (3) 24 (1972) 79-100. Zbl0225.17005MR289592
  12. [12] I.N. Stewart: Levi factors of infinite-dimensional Lie algebras. J. London Math. Soc. (2) 5 (1972) 488. Zbl0249.17013MR323851
  13. [13] I.N. StewartConjugacy theorems for a class of locally finite Lie algebras. Compositio Math.30 (1975) 181-210. Zbl0303.17006MR382377
  14. [14] I.N. StewartThe structure of certain infinite-dimensional Lie algebras. Proc. 3rd International Colloquium on group-theoretical methods in physics, Marseille1974, University of Nijmegen1975. 
  15. [15] I.N. Stewart: Infinite-dimensional Lie algebras in the spirit of infinite group theory. Compositio Math.22 (1970) 313-331. Zbl0204.36001MR288159
  16. [16] I.N. Stewart: Lie algebras. Lecture notes in mathematics127, Springer, Berlin1969. Zbl0213.04201
  17. [17] E.L. Stitzinger: Theorems on Cartan subalgebras like some on Carter subgroups. Trans. Amer. Math. Soc.159 (1971) 307-315. Zbl0238.17009MR280556
  18. [18] S.E. Stonehewer: Abnormal subgroups of a class of periodic locally soluble groups. Proc. London Math. Soc. (3) 14 (1964) 520-536. Zbl0123.24902MR165012
  19. [19] M.J. Tomkinson: Formations of locally soluble FC-groups. Proc. London Math. Soc. (3) 19 (1969) 675-708. Zbl0179.32302MR260881
  20. [20] D.J. Winter: Abstract Lie algebras. M.I.T. Press, Cambridge Massachusetts1972. Zbl0248.17003MR332905

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.