The number of extensions of an invariant mean

Joseph Max Rosenblatt

Compositio Mathematica (1976)

  • Volume: 33, Issue: 2, page 147-159
  • ISSN: 0010-437X

How to cite

top

Rosenblatt, Joseph Max. "The number of extensions of an invariant mean." Compositio Mathematica 33.2 (1976): 147-159. <http://eudml.org/doc/89302>.

@article{Rosenblatt1976,
author = {Rosenblatt, Joseph Max},
journal = {Compositio Mathematica},
language = {eng},
number = {2},
pages = {147-159},
publisher = {Noordhoff International Publishing},
title = {The number of extensions of an invariant mean},
url = {http://eudml.org/doc/89302},
volume = {33},
year = {1976},
}

TY - JOUR
AU - Rosenblatt, Joseph Max
TI - The number of extensions of an invariant mean
JO - Compositio Mathematica
PY - 1976
PB - Noordhoff International Publishing
VL - 33
IS - 2
SP - 147
EP - 159
LA - eng
UR - http://eudml.org/doc/89302
ER -

References

top
  1. [1] C. Chou: On the Size of the Left Invariant Means on a Semigroup. Proc. Amer. Math. Soc.23 (1969) 199-205. Zbl0188.19006MR247444
  2. [2] C. Chou: On the Topological Invariant Means on a Locally Compact Group. Trans. Amer. Math. Soc.151 (1970) 443-456. Zbl0202.14001MR269780
  3. [3] C. Chou: The Exact Cardinality of the Set of Invariant Means on a Group. Proc. Amer. Math.55 # 1 (1976) 103-106. Zbl0319.43006MR394036
  4. [4] E. Granirer: Criteria for Compactness and for Discreteness of Locally Compact Amenable Groups. Proc. Amer. Math. Soc.40 # 2 (1973) 615-624. Zbl0274.22009MR340962
  5. [5] F. Greenleaf: Invariant Means on Topological Groups and their Applications (Van Nostrand Math Studies 16)Van Nostrand, New York, 1955. Zbl0174.19001MR251549
  6. [6] E. Hewitt and K. Ross: Abstract Harmonic Analysis Vol. I. Springer-Verlag, New York, 1963. Zbl0213.40103MR551496
  7. [7] S. Kakutani and J. Oxtoby: Construction of a non-separable invariant extension of the Lebesgue space. Annals of Math. (2) 52 (1950) 580-590. Zbl0040.20901MR37335
  8. [8] K. Kuratowski: Applications of the Baire-category method to the Problem of Independent Sets. Fundamenta Math. 81 # 1 (1973) 65-72. Zbl0311.54036MR339092
  9. [9] J. Mycielski: Almost Every Function is Independent. Fundamenta Math. 81 # 1 (1973) 43-48. Zbl0311.54018MR339091
  10. [10] J. Rosenblatt: Invariant Means and Invariant Ideals in L∞(G) for a Locally Compact Group G. Journ. Func. Anal. 21 # 1 (1976) 31-51. Zbl0314.43002
  11. [11] J. Rosenblatt: Invariant means for the bounded measurable functions on a locally compact group. Math. Ann.220 (1976) 219-228. Zbl0305.43002MR397305
  12. [12] W. Rudin: Invariant Means on L∞. Studia Math.44 (1972) 219-227. Zbl0215.47004
  13. [13] W. Rudin: Homomorphisms and Translations in L∞(G). Advances in Math.16 (1975) 72-90. Zbl0297.22009
  14. [14] B. Wells: Homomorphisms and Translations of Bounded Functions. Duke Math.157 (1974) 35-39. Zbl0281.28004MR336238

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.