The cardinality of the set of invariant means on a locally compact topological semigroup

Heneri A. M. Dzinotyiweyi

Compositio Mathematica (1985)

  • Volume: 54, Issue: 1, page 41-49
  • ISSN: 0010-437X

How to cite

top

Dzinotyiweyi, Heneri A. M.. "The cardinality of the set of invariant means on a locally compact topological semigroup." Compositio Mathematica 54.1 (1985): 41-49. <http://eudml.org/doc/89696>.

@article{Dzinotyiweyi1985,
author = {Dzinotyiweyi, Heneri A. M.},
journal = {Compositio Mathematica},
keywords = {locally compact topological semigroups; invariant means; weakly uniformly continuous functions},
language = {eng},
number = {1},
pages = {41-49},
publisher = {Martinus Nijhoff Publishers},
title = {The cardinality of the set of invariant means on a locally compact topological semigroup},
url = {http://eudml.org/doc/89696},
volume = {54},
year = {1985},
}

TY - JOUR
AU - Dzinotyiweyi, Heneri A. M.
TI - The cardinality of the set of invariant means on a locally compact topological semigroup
JO - Compositio Mathematica
PY - 1985
PB - Martinus Nijhoff Publishers
VL - 54
IS - 1
SP - 41
EP - 49
LA - eng
KW - locally compact topological semigroups; invariant means; weakly uniformly continuous functions
UR - http://eudml.org/doc/89696
ER -

References

top
  1. [1] A.C. and J.W. Baker: Algebras of measures on a locally compact semigroup III. J. Lond. Math. Soc.4 (1972) 685-695. Zbl0232.43002MR306806
  2. [2] C. Chou: On the size of the set of left invariant means on a semigroup. Proc. Amer. Math. Soc.23 (1969) 199-205. Zbl0188.19006MR247444
  3. [3] C. Chou: On topologically invariant means on a locally compact group. Trans. Amer. Math. Soc.151 (1970) 443-456. Zbl0202.14001MR269780
  4. [4] C. Chou: Topologically invariant means on the von Neumann algebra (VN(G). Trans. Amer. Math. Soc.273 (1982), 207 (1982) 207-229. Zbl0507.22007MR664039
  5. [5] H.A.M. Dzinotyiweyi: Algebras of measures on C-distinguished topological semigroups. Proc. Camb. Philos. Soc.84 (1979) 323-336. Zbl0392.43001MR493158
  6. [6] H.A.M. Dzinotyiweyi: Algebras of functions and invariant means on semigroups. Math. Instituut, Katholieke Universiteit, Nijmegen, Report. 7807 (1978). Zbl0392.43001
  7. [7] H.A.M. Dzinotyweyi: Nonseparability of quotient spaces of function algebras on topological semigroups. Trans. Amer. Math. Soc.272 (1982) 223-235. Zbl0498.43004MR656487
  8. [8] E.E. Granirer: Exposed points of convex sets and weak sequential convergence. Memo Amer. Math. Soc.123 (1972). Zbl0258.46001MR365090
  9. [9] F. Greenleaf: Invariant means on topological groups and their applications, Van Nostrand, New York, 1969. Zbl0174.19001MR251549
  10. [10] E. Hewitt and K. Ross: Abstract harmonic analysis Vol. I. Springer-Verlag, New York1963. Zbl0213.40103MR551496
  11. [11] J.L. Kelley and I. Namioka: Linear topological spaces. D. van Nostrand, Princeton, New Jersey, London, 1963. Zbl0115.09902MR166578
  12. [12] M.M. Klawe: Dimensions of the sets of invariant means of semigroups. Ill J. Math.24 (1980) 233-243. Zbl0437.43008MR575064
  13. [13] T.S. Liu and A. Van Rooij: Invariant means on a locally compact group. Mon. fur Math.78 (1974) 356-359. Zbl0296.43003MR358218
  14. [14] A.L.T. Paterson: Amenability and locally compact semigroups. Mathematica Scandinavia42 (1978) 271-288. Zbl0396.43005MR512274
  15. [15] J.M. Rosenblatt: The number of extensions of an invariant mean. Comp. Math.33 (1976) 147-159. Zbl0335.43001MR435729

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.