A saturation property on ideals

Richard Laver

Compositio Mathematica (1978)

  • Volume: 36, Issue: 3, page 233-242
  • ISSN: 0010-437X

How to cite

top

Laver, Richard. "A saturation property on ideals." Compositio Mathematica 36.3 (1978): 233-242. <http://eudml.org/doc/89369>.

@article{Laver1978,
author = {Laver, Richard},
journal = {Compositio Mathematica},
language = {eng},
number = {3},
pages = {233-242},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {A saturation property on ideals},
url = {http://eudml.org/doc/89369},
volume = {36},
year = {1978},
}

TY - JOUR
AU - Laver, Richard
TI - A saturation property on ideals
JO - Compositio Mathematica
PY - 1978
PB - Sijthoff et Noordhoff International Publishers
VL - 36
IS - 3
SP - 233
EP - 242
LA - eng
UR - http://eudml.org/doc/89369
ER -

References

top
  1. [1] J. Baumgartner: Almost disjoint sets, the dense set problem, and the partition calculus. Ann. Math. Logic.10 (1976) 401-439. Zbl0339.04003MR401472
  2. [2] P. Erdös and R. Rado: A partition calculus in set theory. Bull. Amer. Math. Soc.62 (1956) 427-489. Zbl0071.05105MR81864
  3. [3] P. Erdös and R. Rado: Intersection theorems for systems of sets. J. London Math. Soc.35 (1960) 85-90. Zbl0103.27901MR111692
  4. [4] A. Hajnal: Some results and problems in set theory. Acta Math. Acad. Sci. Hungar.11 (1960) 277-298. Zbl0106.00901MR150044
  5. [5] R. Jensen and K. Kunen: Some combinatorial properties of L and V, mimeographed. 
  6. [6] K. Kunen: A partition theorem. Notices of the AMS18 (1971) 425. 
  7. [7] K. Kunen: Saturated Ideals. J. Symb. Logic, Zbl0395.03031MR495118
  8. [8] K. Kunen and J. Paris: Boolean extensions and measurable cardinals. Ann. Math. Logic2 (1971) 359-377. Zbl0216.01402MR277381
  9. [9] R. Laver: Partition relations for uncountable cardinals ≤ 2 N0. Colloquia Mathmatica Societatis Janos Bolyai 10 (Infinite and finite sets, Keszthely [Hungary], 1973) North Holland, 1975, 1029-1042. Zbl0309.02071
  10. [10] M. Marczewski: Séparabilité et multiplication cartésienne des espaces topologiques. Fund. Math.34 (1947) 127-143. Zbl0032.19104MR21680
  11. [11] K. Prikry: Changing measurable into accessible cardinals. Dissertationes Math. (Rozprawy Mat.)68, 1970. Zbl0212.32404MR262075
  12. [12] G. Sacks: Forcing with perfect closed sets. Proceedings of AMS Symposia in Pure Mathematics 13, Part 1, Providence, 1971, 331-355. Zbl0226.02047MR276079
  13. [13] W. Sierpinski: Sur un problème de la théorie des relations. Ann. Scuola Norm. Sup. Pisa2 (1933) 285-287. Zbl0007.09702JFM59.0092.01
  14. [14] R.M. Solovay: Real valued measurable cardinals. Proceedings of Symposia in pure mathematics, 13, Part 1, Providence, 1971, 397-428. Zbl0222.02078MR290961
  15. [15] S. Ulam: Zur Masstheorie in der allgemeine Mengenlehre. Fund. Math.16 (1930) 140-150. Zbl56.0920.04JFM56.0920.04
  16. [16] S. Wagon: Decompositions of saturated ideals. Thesis, Dartmouth College, 1975. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.