On a conjecture of M. E. Watkins on graphical regular representations of finite groups
Compositio Mathematica (1978)
- Volume: 37, Issue: 3, page 291-296
- ISSN: 0010-437X
Access Full Article
topHow to cite
topBabai, László. "On a conjecture of M. E. Watkins on graphical regular representations of finite groups." Compositio Mathematica 37.3 (1978): 291-296. <http://eudml.org/doc/89384>.
@article{Babai1978,
author = {Babai, László},
journal = {Compositio Mathematica},
keywords = {Conjecture of M. E. Watkins; Graphical Regular Representations of Finite Groups},
language = {eng},
number = {3},
pages = {291-296},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {On a conjecture of M. E. Watkins on graphical regular representations of finite groups},
url = {http://eudml.org/doc/89384},
volume = {37},
year = {1978},
}
TY - JOUR
AU - Babai, László
TI - On a conjecture of M. E. Watkins on graphical regular representations of finite groups
JO - Compositio Mathematica
PY - 1978
PB - Sijthoff et Noordhoff International Publishers
VL - 37
IS - 3
SP - 291
EP - 296
LA - eng
KW - Conjecture of M. E. Watkins; Graphical Regular Representations of Finite Groups
UR - http://eudml.org/doc/89384
ER -
References
top- [1] G.D. Godsil: Neighbourhoods of transitive graphs and GGR's, preprint, University of Melbourne (1978).
- [2] D. Hetzel: Graphical regular representations of cyclic extensions of small and infinite groups (to appear).
- [3] W. Imrich: Graphs with transitive Abelian automorphism groups, in: Comb. Th. and Appl. (P. Erdös et al. eds. Proc. Conf. Balatonfüred, Hungary 1969) North-Holland1970, 651-656. Zbl0206.26202
- [4] W. Imrich: Graphical regular representations of groups of odd order, in: Combinatorics (A. Hajnal and Vera T. Sós, eds.), North-Holland1978, 611-622. Zbl0413.05017MR519296
- [5] M.E. Watkins: On the action of non-abelian groups on graphs. J. Comb. Theory (B) 1 (1971) 95-104. Zbl0227.05108MR280416
- [6] M.E. Watkins: Graphical regular representations of alternating, symmetric, and miscellaneous small groups, Aequat. Math.11 (1974) 40-50. Zbl0294.05114MR344157
- [7] M.E. Watkins: The state of the GRR problem, in: Recent Advances in Graph Theory (Proc. Symp. Prague 1974), AcademiaPraha1975, 517-522. Zbl0333.05109MR389657
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.