Remarkable operators and commutation formulas on locally conformal Kähler manifolds

Izu Vaisman

Compositio Mathematica (1980)

  • Volume: 40, Issue: 3, page 287-299
  • ISSN: 0010-437X

How to cite

top

Vaisman, Izu. "Remarkable operators and commutation formulas on locally conformal Kähler manifolds." Compositio Mathematica 40.3 (1980): 287-299. <http://eudml.org/doc/89438>.

@article{Vaisman1980,
author = {Vaisman, Izu},
journal = {Compositio Mathematica},
keywords = {Commutation Formulas; Locally Conformal Kaehler Manifold; Harmonic Forms},
language = {eng},
number = {3},
pages = {287-299},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {Remarkable operators and commutation formulas on locally conformal Kähler manifolds},
url = {http://eudml.org/doc/89438},
volume = {40},
year = {1980},
}

TY - JOUR
AU - Vaisman, Izu
TI - Remarkable operators and commutation formulas on locally conformal Kähler manifolds
JO - Compositio Mathematica
PY - 1980
PB - Sijthoff et Noordhoff International Publishers
VL - 40
IS - 3
SP - 287
EP - 299
LA - eng
KW - Commutation Formulas; Locally Conformal Kaehler Manifold; Harmonic Forms
UR - http://eudml.org/doc/89438
ER -

References

top
  1. [1] S.I. Goldberg: Curvature and Homology. Academic Press, New York, 1962. Zbl0105.15601MR139098
  2. [2] A. Gray and L.M. Hervella: The sixteen classes of almost Hermitian manifolds and their linear invariants (preprint). Zbl0444.53032MR581924
  3. [3] S. Halperin and D. Lehmann: Cohomologies et classes caractéristiques des choux de Bruxelles. Diff. Topology and Geometry, Proc. Colloq. Dijon1974.Lecture Notes in Math484, Springer-Verlag, Berlin, 1975, 79-120. Zbl0313.57007MR402772
  4. [4] P. Libermann: Sur les structures presque complexes et autres structures infinitésimales régulières. Bull Soc. Math. France, 83 (1955), 195-224. Zbl0064.41702MR79766
  5. [5] A. Lichnerowicz: Théorie globale des connexions et des groupes d'holonomie, Edizione Cremonese, Roma, 1955. Zbl0116.39101
  6. [6] I. Vaisman: Cohomology and Differential Forms, M. Dekker, Inc., New York, 1973. Zbl0267.58001MR341344
  7. [7] I. Vaisman: On locally conformal almost Kähler manifolds, Israel J. of Math.24 (1976), 338-351. Zbl0335.53055MR418003
  8. [8] I. Vaisman: Locally conformal Kähler manifolds with parallel Lee form, Rendiconti di Mat ematicaRoma (to appear). Zbl0447.53032MR557668
  9. [9] A. Weil: Introduction à l'étude des variétés Kählériennes, Hermann, Paris, 1958. Zbl0137.41103MR111056

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.