Stability of Tangential Locally Conformal Symplectic Forms

Cristian Ida

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2014)

  • Volume: 53, Issue: 1, page 81-89
  • ISSN: 0231-9721

Abstract

top
In this paper we firstly define a tangential Lichnerowicz cohomology on foliated manifolds. Next, we define tangential locally conformal symplectic forms on a foliated manifold and we formulate and prove some results concerning their stability.

How to cite

top

Ida, Cristian. "Stability of Tangential Locally Conformal Symplectic Forms." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 53.1 (2014): 81-89. <http://eudml.org/doc/261966>.

@article{Ida2014,
abstract = {In this paper we firstly define a tangential Lichnerowicz cohomology on foliated manifolds. Next, we define tangential locally conformal symplectic forms on a foliated manifold and we formulate and prove some results concerning their stability.},
author = {Ida, Cristian},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {foliated manifold; tangential Lichnerowicz cohomology; tangential locally conformal symplectic structure; stability; foliated manifold; tangential Lichnerowicz cohomology; tangential locally conformal symplectic structure; stability},
language = {eng},
number = {1},
pages = {81-89},
publisher = {Palacký University Olomouc},
title = {Stability of Tangential Locally Conformal Symplectic Forms},
url = {http://eudml.org/doc/261966},
volume = {53},
year = {2014},
}

TY - JOUR
AU - Ida, Cristian
TI - Stability of Tangential Locally Conformal Symplectic Forms
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2014
PB - Palacký University Olomouc
VL - 53
IS - 1
SP - 81
EP - 89
AB - In this paper we firstly define a tangential Lichnerowicz cohomology on foliated manifolds. Next, we define tangential locally conformal symplectic forms on a foliated manifold and we formulate and prove some results concerning their stability.
LA - eng
KW - foliated manifold; tangential Lichnerowicz cohomology; tangential locally conformal symplectic structure; stability; foliated manifold; tangential Lichnerowicz cohomology; tangential locally conformal symplectic structure; stability
UR - http://eudml.org/doc/261966
ER -

References

top
  1. Banyaga, A., 10.1007/s00014-002-8345-z, Comment. Math. Helv. 77, 2 (2002), 383–398. (2002) Zbl1020.53050MR1915047DOI10.1007/s00014-002-8345-z
  2. Banyaga, A., 10.1007/s00022-006-1849-8, Journal of Geometry 87, 1-2 (2007), 1–13. (2007) Zbl1157.53040MR2372512DOI10.1007/s00022-006-1849-8
  3. Bande, G., Kotschick, D., 10.1090/S0002-9939-09-09821-9, Proc. Amer. Math. Soc. 137 (2009), 2419–2424. (2009) Zbl1176.53081MR2495277DOI10.1090/S0002-9939-09-09821-9
  4. Bott, R., Tu, L. W., Differential Forms in Algebraic Topology, Graduate Text in Math. 82 Springer-Verlag, Berlin, 1982. (1982) Zbl0496.55001MR0658304
  5. Datta, M., Islam, Md R., 10.1007/s12044-009-0025-0, Proc. Indian Acad. Sci. (Math. Sci.) 119, 3 (2009), 333–343. (2009) Zbl1173.53309MR2547696DOI10.1007/s12044-009-0025-0
  6. Giachetta, G., Mangiarotti, L., Sardanashvily, G., Geometric and Algebraic Toplogical Methods in Quantum Mechanics, World Scientific, Singapore, 2005. (2005) MR2218620
  7. Guedira, F., Lichnerowicz, A., Geometrie des algebres de Lie locales de Kirillov, J. Math. Pures et Appl. 63 (1984), 407–484. (1984) Zbl0562.53029MR0789560
  8. Haller, S., Rybicki, T., 10.1023/A:1006650124434, Annals of Global Analysis and Geometry 17, 5 (1999), 475–502. (1999) Zbl0940.53044MR1715157DOI10.1023/A:1006650124434
  9. Hector, G., Macias, E., Saralegi, M., 10.5565/PUBLMAT_33389_04, Publ. Mat. 33 (1989), 423–430. (1989) Zbl0716.58011MR1038481DOI10.5565/PUBLMAT_33389_04
  10. El Kacimi, A. A., Sur la cohomologie feuilletée, Compositio Mathematica 49, 2 (1983), 195–215. (1983) Zbl0516.57017MR0704391
  11. Lee, H. C., 10.2307/2371967, Amer. J. Math. 65 (1943), 433–438. (1943) Zbl0060.38302MR0008495DOI10.2307/2371967
  12. de León, M., López, B., Marrero, J. C., Padrón, E., 10.1016/S0393-0440(02)00056-6, J. Geom. Phys. 44 (2003), 507–522. (2003) Zbl1092.53060MR1943175DOI10.1016/S0393-0440(02)00056-6
  13. Lichnerowicz, A., Les variétés de Poisson et leurs algébres de Lie associées, J. Differential Geom. 12, 2 (1977), 253–300. (1977) Zbl0405.53024MR0501133
  14. Molino, P., Riemannian foliations, Progress in Mathematics 73 Birkhäuser, Boston, 1988. (1988) Zbl0668.57023MR0932463
  15. Moore, C. C., Schochet, C., Global Analysis on Foliated Spaces, MSRI Publications 9 Springer-Verlag, New York, 1988. (1988) Zbl0648.58034MR0918974
  16. Moser, J., 10.1090/S0002-9947-1965-0182927-5, Trans. Amer. Math. Soc. 120 (1965), 286–294. (1965) Zbl0141.19407MR0182927DOI10.1090/S0002-9947-1965-0182927-5
  17. Mümken, B., 10.1353/ajm.2006.0047, American J. Math. 128, 6 (2006), 1391–1408. (2006) Zbl1111.53025MR2275025DOI10.1353/ajm.2006.0047
  18. Novikov, S. P., The Hamiltonian formalism and a multivalued analogue of Morse theory, Uspekhi Mat. Nauk 37 (1982), 3-49. (1982), 3–49 (in Russian). (1982) MR0676612
  19. Ornea, L., Verbitsky, M., 10.1016/j.geomphys.2008.11.003, J. of Geometry and Physics 59 (2009), 295–305. (2009) Zbl1161.57015MR2501742DOI10.1016/j.geomphys.2008.11.003
  20. Rybicki, T., 10.1016/S0926-2245(01)00042-0, Diff. Geom. Appl. 15 (2001), 33–46. (2001) Zbl0988.22010MR1845174DOI10.1016/S0926-2245(01)00042-0
  21. Tondeur, Ph., Foliations on Riemannian Manifolds, Universitext, Springer-Verlag, 1988. (1988) Zbl0643.53024MR0934020
  22. Vaisman, I., Variétés riemanniene feuilletées, Czechoslovak Math. J. 21 (1971), 46–75. (1971) 
  23. Vaisman, I., Remarkable operators and commutation formulas on locally conformal Kähler manifolds, Compositio Math. 40, 3 (1980), 287–299. (1980) Zbl0401.53019MR0571051
  24. Vaisman, I., Locally conformal symplectic manifolds, Internat. J. Math. and Math. Sci. 8, 3 (1985), 521–536. (1985) Zbl0585.53030MR0809073

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.