Stability of Tangential Locally Conformal Symplectic Forms
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2014)
- Volume: 53, Issue: 1, page 81-89
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topIda, Cristian. "Stability of Tangential Locally Conformal Symplectic Forms." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 53.1 (2014): 81-89. <http://eudml.org/doc/261966>.
@article{Ida2014,
abstract = {In this paper we firstly define a tangential Lichnerowicz cohomology on foliated manifolds. Next, we define tangential locally conformal symplectic forms on a foliated manifold and we formulate and prove some results concerning their stability.},
author = {Ida, Cristian},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {foliated manifold; tangential Lichnerowicz cohomology; tangential locally conformal symplectic structure; stability; foliated manifold; tangential Lichnerowicz cohomology; tangential locally conformal symplectic structure; stability},
language = {eng},
number = {1},
pages = {81-89},
publisher = {Palacký University Olomouc},
title = {Stability of Tangential Locally Conformal Symplectic Forms},
url = {http://eudml.org/doc/261966},
volume = {53},
year = {2014},
}
TY - JOUR
AU - Ida, Cristian
TI - Stability of Tangential Locally Conformal Symplectic Forms
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2014
PB - Palacký University Olomouc
VL - 53
IS - 1
SP - 81
EP - 89
AB - In this paper we firstly define a tangential Lichnerowicz cohomology on foliated manifolds. Next, we define tangential locally conformal symplectic forms on a foliated manifold and we formulate and prove some results concerning their stability.
LA - eng
KW - foliated manifold; tangential Lichnerowicz cohomology; tangential locally conformal symplectic structure; stability; foliated manifold; tangential Lichnerowicz cohomology; tangential locally conformal symplectic structure; stability
UR - http://eudml.org/doc/261966
ER -
References
top- Banyaga, A., 10.1007/s00014-002-8345-z, Comment. Math. Helv. 77, 2 (2002), 383–398. (2002) Zbl1020.53050MR1915047DOI10.1007/s00014-002-8345-z
- Banyaga, A., 10.1007/s00022-006-1849-8, Journal of Geometry 87, 1-2 (2007), 1–13. (2007) Zbl1157.53040MR2372512DOI10.1007/s00022-006-1849-8
- Bande, G., Kotschick, D., 10.1090/S0002-9939-09-09821-9, Proc. Amer. Math. Soc. 137 (2009), 2419–2424. (2009) Zbl1176.53081MR2495277DOI10.1090/S0002-9939-09-09821-9
- Bott, R., Tu, L. W., Differential Forms in Algebraic Topology, Graduate Text in Math. 82 Springer-Verlag, Berlin, 1982. (1982) Zbl0496.55001MR0658304
- Datta, M., Islam, Md R., 10.1007/s12044-009-0025-0, Proc. Indian Acad. Sci. (Math. Sci.) 119, 3 (2009), 333–343. (2009) Zbl1173.53309MR2547696DOI10.1007/s12044-009-0025-0
- Giachetta, G., Mangiarotti, L., Sardanashvily, G., Geometric and Algebraic Toplogical Methods in Quantum Mechanics, World Scientific, Singapore, 2005. (2005) MR2218620
- Guedira, F., Lichnerowicz, A., Geometrie des algebres de Lie locales de Kirillov, J. Math. Pures et Appl. 63 (1984), 407–484. (1984) Zbl0562.53029MR0789560
- Haller, S., Rybicki, T., 10.1023/A:1006650124434, Annals of Global Analysis and Geometry 17, 5 (1999), 475–502. (1999) Zbl0940.53044MR1715157DOI10.1023/A:1006650124434
- Hector, G., Macias, E., Saralegi, M., 10.5565/PUBLMAT_33389_04, Publ. Mat. 33 (1989), 423–430. (1989) Zbl0716.58011MR1038481DOI10.5565/PUBLMAT_33389_04
- El Kacimi, A. A., Sur la cohomologie feuilletée, Compositio Mathematica 49, 2 (1983), 195–215. (1983) Zbl0516.57017MR0704391
- Lee, H. C., 10.2307/2371967, Amer. J. Math. 65 (1943), 433–438. (1943) Zbl0060.38302MR0008495DOI10.2307/2371967
- de León, M., López, B., Marrero, J. C., Padrón, E., 10.1016/S0393-0440(02)00056-6, J. Geom. Phys. 44 (2003), 507–522. (2003) Zbl1092.53060MR1943175DOI10.1016/S0393-0440(02)00056-6
- Lichnerowicz, A., Les variétés de Poisson et leurs algébres de Lie associées, J. Differential Geom. 12, 2 (1977), 253–300. (1977) Zbl0405.53024MR0501133
- Molino, P., Riemannian foliations, Progress in Mathematics 73 Birkhäuser, Boston, 1988. (1988) Zbl0668.57023MR0932463
- Moore, C. C., Schochet, C., Global Analysis on Foliated Spaces, MSRI Publications 9 Springer-Verlag, New York, 1988. (1988) Zbl0648.58034MR0918974
- Moser, J., 10.1090/S0002-9947-1965-0182927-5, Trans. Amer. Math. Soc. 120 (1965), 286–294. (1965) Zbl0141.19407MR0182927DOI10.1090/S0002-9947-1965-0182927-5
- Mümken, B., 10.1353/ajm.2006.0047, American J. Math. 128, 6 (2006), 1391–1408. (2006) Zbl1111.53025MR2275025DOI10.1353/ajm.2006.0047
- Novikov, S. P., The Hamiltonian formalism and a multivalued analogue of Morse theory, Uspekhi Mat. Nauk 37 (1982), 3-49. (1982), 3–49 (in Russian). (1982) MR0676612
- Ornea, L., Verbitsky, M., 10.1016/j.geomphys.2008.11.003, J. of Geometry and Physics 59 (2009), 295–305. (2009) Zbl1161.57015MR2501742DOI10.1016/j.geomphys.2008.11.003
- Rybicki, T., 10.1016/S0926-2245(01)00042-0, Diff. Geom. Appl. 15 (2001), 33–46. (2001) Zbl0988.22010MR1845174DOI10.1016/S0926-2245(01)00042-0
- Tondeur, Ph., Foliations on Riemannian Manifolds, Universitext, Springer-Verlag, 1988. (1988) Zbl0643.53024MR0934020
- Vaisman, I., Variétés riemanniene feuilletées, Czechoslovak Math. J. 21 (1971), 46–75. (1971)
- Vaisman, I., Remarkable operators and commutation formulas on locally conformal Kähler manifolds, Compositio Math. 40, 3 (1980), 287–299. (1980) Zbl0401.53019MR0571051
- Vaisman, I., Locally conformal symplectic manifolds, Internat. J. Math. and Math. Sci. 8, 3 (1985), 521–536. (1985) Zbl0585.53030MR0809073
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.