The laplacian and the Dirac operator in infinitely many variables
Compositio Mathematica (1980)
- Volume: 41, Issue: 1, page 137-152
- ISSN: 0010-437X
Access Full Article
topHow to cite
topPlymen, R. J.. "The laplacian and the Dirac operator in infinitely many variables." Compositio Mathematica 41.1 (1980): 137-152. <http://eudml.org/doc/89449>.
@article{Plymen1980,
author = {Plymen, R. J.},
journal = {Compositio Mathematica},
keywords = {spinor representations; spinor Laplacian; Dirac operator; Banach-Lie group; spin representation; projective tensor product of Hilbert spaces; nuclear spinor fields},
language = {eng},
number = {1},
pages = {137-152},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {The laplacian and the Dirac operator in infinitely many variables},
url = {http://eudml.org/doc/89449},
volume = {41},
year = {1980},
}
TY - JOUR
AU - Plymen, R. J.
TI - The laplacian and the Dirac operator in infinitely many variables
JO - Compositio Mathematica
PY - 1980
PB - Sijthoff et Noordhoff International Publishers
VL - 41
IS - 1
SP - 137
EP - 152
LA - eng
KW - spinor representations; spinor Laplacian; Dirac operator; Banach-Lie group; spin representation; projective tensor product of Hilbert spaces; nuclear spinor fields
UR - http://eudml.org/doc/89449
ER -
References
top- [1] M. Anastasiei: Spin structures on Hilbert manifolds. C.R. Acad. Sc. Paris284A (1977) 943-946. Zbl0356.58003MR533766
- [2] M.F. Atiyah, R. Bott, and A. Shapiro: Clifford modules, Topology3, supplement 1 (1964) 3-38. Zbl0146.19001MR167985
- [3] H. Cartan: "Differential calculus". Hermann, Paris, 1971. MR344032
- [4] J. Dieudonne: "Foundations of modern analysis". Academic Press, New York, 1969. Zbl0176.00502MR349288
- [5] K.D. Elworthy: Gaussian measures on Banach spaces and manifolds, in "Global analysis and its applications", IAEA, Vienna, 1974. Zbl0319.58007MR464297
- [6] L. Gross: Potential theory on Hilbert space, J. Functional Analysis1 (1967) 123-181. Zbl0165.16403MR227747
- [7] A. Grothendieck: La théorie de Fredholm, Bull. Soc. math. France84 (1956) 319-384. Zbl0073.10101MR88665
- [8] A. Grothendieck: Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc.16 (1955). Zbl0123.30301MR75539
- [9] P. De La Harpe: The Clifford algebra and the spinor group of a Hilbert space. Compositio Math.25 (1972) 245-261. Zbl0244.22018MR317068
- [10] N. Hitchin: Harmonic spinors, Advances in math14 (1974) 1-55. Zbl0284.58016MR358873
- [11] N.M. Hugenholtz and R.V. Kadison: Automorphisms and quasi-free states of the CAR algebra, Commun. math. phys.43 (1975) 181-197. Zbl0308.46055MR384004
- [12] J. Manuceau and A. Verbeure: The theorem on unitary equivalence of Fock representations, Ann. Inst. Henri Poincaré, 16 No 12 (1971) 87-91. Zbl0241.47018MR300573
- [13] J. Milnor: Spin structures on manifolds, Enseignement math. (2) 9 (1963) 198-203. Zbl0116.40403MR157388
- [14] R.J. Plymen: Spinors in Hilbert space, Math. Proc. Camb. Phil. Soc.80 (1976) 337-347. Zbl0332.22019MR419689
- [15] R.J. Plymen: Some recent results on infinite-dimensional spin groups. In: Studies in algebra and number theory, edited by G-C. Rota, Academic press, New York (1979) 159-171. Zbl0463.22016MR535765
- [16] R. Schatten: "A theory of cross-spaces". Princeton University Press, Princeton, New Jersey, 1950. Zbl0041.43502MR36935
- [17] E. Stormer: The even CAR algebra, Commun. Math. Phys.16 (1970) 136-137. Zbl0187.38503MR269232
- [18] D. Shale and W.F. Stinespring: Spinor representations of infinite orthogonal groups, J. Math. Mech.14 (1965) 315-322. Zbl0132.36003MR173163
- [19] Y. Umemura: On the infinite dimensional Laplace operator, J. Math. Kyoto Univ.4 (1965) 477. Zbl0188.20703
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.