The laplacian and the Dirac operator in infinitely many variables

R. J. Plymen

Compositio Mathematica (1980)

  • Volume: 41, Issue: 1, page 137-152
  • ISSN: 0010-437X

How to cite

top

Plymen, R. J.. "The laplacian and the Dirac operator in infinitely many variables." Compositio Mathematica 41.1 (1980): 137-152. <http://eudml.org/doc/89449>.

@article{Plymen1980,
author = {Plymen, R. J.},
journal = {Compositio Mathematica},
keywords = {spinor representations; spinor Laplacian; Dirac operator; Banach-Lie group; spin representation; projective tensor product of Hilbert spaces; nuclear spinor fields},
language = {eng},
number = {1},
pages = {137-152},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {The laplacian and the Dirac operator in infinitely many variables},
url = {http://eudml.org/doc/89449},
volume = {41},
year = {1980},
}

TY - JOUR
AU - Plymen, R. J.
TI - The laplacian and the Dirac operator in infinitely many variables
JO - Compositio Mathematica
PY - 1980
PB - Sijthoff et Noordhoff International Publishers
VL - 41
IS - 1
SP - 137
EP - 152
LA - eng
KW - spinor representations; spinor Laplacian; Dirac operator; Banach-Lie group; spin representation; projective tensor product of Hilbert spaces; nuclear spinor fields
UR - http://eudml.org/doc/89449
ER -

References

top
  1. [1] M. Anastasiei: Spin structures on Hilbert manifolds. C.R. Acad. Sc. Paris284A (1977) 943-946. Zbl0356.58003MR533766
  2. [2] M.F. Atiyah, R. Bott, and A. Shapiro: Clifford modules, Topology3, supplement 1 (1964) 3-38. Zbl0146.19001MR167985
  3. [3] H. Cartan: "Differential calculus". Hermann, Paris, 1971. MR344032
  4. [4] J. Dieudonne: "Foundations of modern analysis". Academic Press, New York, 1969. Zbl0176.00502MR349288
  5. [5] K.D. Elworthy: Gaussian measures on Banach spaces and manifolds, in "Global analysis and its applications", IAEA, Vienna, 1974. Zbl0319.58007MR464297
  6. [6] L. Gross: Potential theory on Hilbert space, J. Functional Analysis1 (1967) 123-181. Zbl0165.16403MR227747
  7. [7] A. Grothendieck: La théorie de Fredholm, Bull. Soc. math. France84 (1956) 319-384. Zbl0073.10101MR88665
  8. [8] A. Grothendieck: Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc.16 (1955). Zbl0123.30301MR75539
  9. [9] P. De La Harpe: The Clifford algebra and the spinor group of a Hilbert space. Compositio Math.25 (1972) 245-261. Zbl0244.22018MR317068
  10. [10] N. Hitchin: Harmonic spinors, Advances in math14 (1974) 1-55. Zbl0284.58016MR358873
  11. [11] N.M. Hugenholtz and R.V. Kadison: Automorphisms and quasi-free states of the CAR algebra, Commun. math. phys.43 (1975) 181-197. Zbl0308.46055MR384004
  12. [12] J. Manuceau and A. Verbeure: The theorem on unitary equivalence of Fock representations, Ann. Inst. Henri Poincaré, 16 No 12 (1971) 87-91. Zbl0241.47018MR300573
  13. [13] J. Milnor: Spin structures on manifolds, Enseignement math. (2) 9 (1963) 198-203. Zbl0116.40403MR157388
  14. [14] R.J. Plymen: Spinors in Hilbert space, Math. Proc. Camb. Phil. Soc.80 (1976) 337-347. Zbl0332.22019MR419689
  15. [15] R.J. Plymen: Some recent results on infinite-dimensional spin groups. In: Studies in algebra and number theory, edited by G-C. Rota, Academic press, New York (1979) 159-171. Zbl0463.22016MR535765
  16. [16] R. Schatten: "A theory of cross-spaces". Princeton University Press, Princeton, New Jersey, 1950. Zbl0041.43502MR36935
  17. [17] E. Stormer: The even CAR algebra, Commun. Math. Phys.16 (1970) 136-137. Zbl0187.38503MR269232
  18. [18] D. Shale and W.F. Stinespring: Spinor representations of infinite orthogonal groups, J. Math. Mech.14 (1965) 315-322. Zbl0132.36003MR173163
  19. [19] Y. Umemura: On the infinite dimensional Laplace operator, J. Math. Kyoto Univ.4 (1965) 477. Zbl0188.20703

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.