2-innerproduct spaces and Gâteaux partial derivatives
A positive operator A and a closed subspace of a Hilbert space ℋ are called compatible if there exists a projector Q onto such that AQ = Q*A. Compatibility is shown to depend on the existence of certain decompositions of ℋ and the ranges of A and . It also depends on a certain angle between A() and the orthogonal of .
Si prova resistenza locale della soluzione di una equazione di Riccati che si incontra in un problema di controllo ottimale. In ipotesi di regolarità per il costo si prova resistenza globale. Il problema astratto considerato è il modello di alcuni problemi di controllo ottimale governati da equazioni paraboliche con controllo sulla frontiera.
We analise periodic functions (mod r), keeping Cauchy multiplication as the basic tool, and pay particular attention to even functions (mod r) having the property f(n) = f((n,r)) for all n. We provide some new aspects into the Hilbert space structure of even functions (mod r) and make use of linera transformations to interpret the known number-theoretic formulae involving solutions of congruences.