p -adic L -functions for elliptic curves with complex multiplication I

Pierrette Cassou-Noguès

Compositio Mathematica (1980)

  • Volume: 42, Issue: 1, page 31-56
  • ISSN: 0010-437X

How to cite

top

Cassou-Noguès, Pierrette. "$p$-adic $L$-functions for elliptic curves with complex multiplication I." Compositio Mathematica 42.1 (1980): 31-56. <http://eudml.org/doc/89470>.

@article{Cassou1980,
author = {Cassou-Noguès, Pierrette},
journal = {Compositio Mathematica},
keywords = {p-adic L-functions; complex multiplication; residue formula; values of L- functions; Kummer criterion},
language = {eng},
number = {1},
pages = {31-56},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {$p$-adic $L$-functions for elliptic curves with complex multiplication I},
url = {http://eudml.org/doc/89470},
volume = {42},
year = {1980},
}

TY - JOUR
AU - Cassou-Noguès, Pierrette
TI - $p$-adic $L$-functions for elliptic curves with complex multiplication I
JO - Compositio Mathematica
PY - 1980
PB - Sijthoff et Noordhoff International Publishers
VL - 42
IS - 1
SP - 31
EP - 56
LA - eng
KW - p-adic L-functions; complex multiplication; residue formula; values of L- functions; Kummer criterion
UR - http://eudml.org/doc/89470
ER -

References

top
  1. [1] N. Arthaud: On Birch and Swinnerton-Dyer's conjecture for elliptic curve with complex multiplication I. Compositio Math.37 (1978) 209-232. Zbl0396.12011MR504632
  2. [2] J. Coates: p-adic L functions and Iwasawa theory in Algebraic Number Fields, editor A. Fröhlich Academic Press, 1977. MR460282
  3. [3] J. Coates and A. Wiles: On the conjecture of Birch and Swinnerton-Dyer, Inventiones Mathematicae39 (1977) 223-251. Zbl0359.14009MR463176
  4. [4] J. Coates and A. Wiles: Kummer's criterion for Hürwitz numbers. Proceedings of the International Conference on Algebraic Number Theory. Kyoto Japan 1976. Zbl0369.12009
  5. [5] J. Coates and A. Wiles: On p-adic L-functions and elliptic units. J. Austral. Math. Soc. (series A) 26 (1978) 1-25. Zbl0442.12007MR510581
  6. [6] A. Fröhlich: Formal groups. Lecture Notes in Mathematics74. Springer1968. Zbl0177.04801MR242837
  7. [7] E. Hecke: Mathematishe werke n ° 14. Eine neue Art von Zeta funktionen und ihre Beziehungen zur Verteilung der Primzahlen, Zweite Mitteilung p. 249-289. 
  8. [8] K. Iwazawa: Lectures on p-adic L-functions. Ann. of Maths Studies74. Princeton University Press, 1972. Zbl0236.12001MR360526
  9. [9] N. Katz: The Eisenstein measure and p-adic interpolation. Amer. J. Math.99, p. 238-311. Zbl0375.12022MR485797
  10. [10] N. Katz: Formal groups and p-adic interpolation, Astérisque41-42, p. 55-65. Zbl0351.14024MR441928
  11. [11] H.W. Leopoldt: Eine p-adische Theorie der Zetawerte II. J. Reine Ang. Math.274-275 (1975) 224-239. Zbl0309.12009MR379446
  12. [12] S. Lichtenbaum: On p-adic L-functions associated to elliptic curves, Inventiones Mathematicae56 (1980) 19-55. Zbl0425.12017MR557580
  13. [13] J. Lubin: One parameter formal Lie groups over p-adic integer rings. Ann. of Maths80 (1964) 464-484. Zbl0135.07003MR168567
  14. [14] J. Lubin and J. Tate: Formal complex multiplication in local fields. Ann. of Maths81 (1965) 380-387. Zbl0128.26501MR172878
  15. [15] J. Manin and S. Vishik: p-adic Hecke series for quadratic imaginary fields. Math. Sbornik24 (1974) 345-372. Zbl0329.12016
  16. [16] G. Robert: Unités elliptiques. Bull. Soc. Math. France, mémoire 36 (1973). Zbl0314.12006MR469889
  17. [ 17] G. Shimura: Introduction to the arithmetic theory of automorphic functions. Pub. Math. Soc. JapanII (1971). Zbl0221.10029MR314766
  18. [18] C.L. Siegel: Lectures on advanced analytic number theory. Tata Institute of fundamental researchBombay. Zbl0278.10001MR262150
  19. [19] J. Tate: Arithmetic of elliptic curves. Inventiones Math.23 (1974) 179-206. Zbl0296.14018MR419359
  20. [20] S. Vishik: The p-adic zeta function of an imaginary quadratic field and the Leopold regulator. Math. Sbornik102 (144) (1977) No. 2. Zbl0443.12007MR480435

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.