The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 23

Showing per page

Order by Relevance | Title | Year of publication

Racines de polynômes de Bernstein

Pierrette Cassou-Noguès — 1986

Annales de l'institut Fourier

On considère un polynôme P , à coefficients réels non négatifs, à deux indéterminées. On montre que la connaissance des pôles des intégrales 0 1 0 1 x 1 β 1 - 1 x 2 β 2 - 1 P ( x 1 , x 2 ) s d x 1 d x 2 donne des renseignements sur les racines du polynômes de Bernstein de P . La détermination des pôles des intégrales peut se faire en utilisant certaines méthodes de Mellin. Des calculs explicites sont donnés.

The effect of rational maps on polynomial maps

Pierrette Cassou-Noguès — 2001

Annales Polonici Mathematici

We describe the polynomials P ∈ ℂ[x,y] such that P ( 1 / v , A v + A v 2 n + . . . + A m - 1 v n ( m - 1 ) + v n m - k w ) [ v , w ] . As applications we give new examples of bad field generators and examples of families of polynomials with smooth and irreducible fibers.

Sur le nombre de Łojasiewicz à l'infini d'un polynôme

Pierrette Cassou-NoguèsHa Huy Vui — 1995

Annales Polonici Mathematici

Résumé. Soit f un polynôme à deux indéterminées. On appelle nombre de Łojasiewicz à l'infini de f le nombre de Łojasiewicz à l'infini de son application gradient. Dans cet article nous montrons tout d'abord que l'on peut calculer le nombre de Łojasiewicz d'un polynôme à partir des diagrammes de Eisenbud et Neumann de toutes les courbes f(x,y) = t. Ensuite nous montrons que l'on peut définir un nombre de Łojasiewicz intrinsèque en prenant le maximum des nombres de Łojasiewicz de f ∘ ϕ si f est bon...

Page 1 Next

Download Results (CSV)