An algebraic group associated to an ergodic diffeomorphism
Compositio Mathematica (1981)
- Volume: 43, Issue: 1, page 59-69
- ISSN: 0010-437X
Access Full Article
topHow to cite
topReferences
top- [1] A. Borel: Density properties for certain subgroups of semisimple Lie groups without compact factors. Annals of Math., 72 (1960), 179-188. Zbl0094.24901MR123639
- [2] J. Dixmier: Représentations induites holomorphes des groups résolubles algébriques. Bull. Soc. Math. France, 94 (1966), 181-206. Zbl0204.44101MR207911
- [3] E.G. Effros: Transformation groups and C*-algebras. Annals of Math.81 (1965), 38-55. Zbl0152.33203MR174987
- [4] J. Feldman and C.C. Moore: Ergodic equivalence relations, cohomology, and von Neumann algebras, I. Trans. Amer. Math. Soc., 234 (1977), 289-324. Zbl0369.22009MR578656
- [5] H. Furstenberg: The structure of distal flows. Amer. J. Math., 85 (1963), 477-515. Zbl0199.27202MR157368
- [6] Y. Guivarch: Croissance polynomiale et périodes des fonctions harmoniques. Bull. Soc. Math. France, 101 (1973), 333-379. Zbl0294.43003MR369608
- [7] G.W. Mackey: Ergodic theory and virtual groups. Math. Ann., 166 (1966), 187-207. Zbl0178.38802MR201562
- [8] C.C. Moore: Distal affine transformation groups. Amer. J. Math., 90 (1968), 733-751. Zbl0195.52604MR232887
- [9] C.C. Moore: Amenable subgroups of semisimple groups and proximal flows. Israel J. Math., 34 (1979) 121-138. Zbl0431.22014MR571400
- [10] C.C. Moore and R.J. Zimmer: Groups admitting ergodic actions with generalized discrete spectrum. Inv. Math., 51 (1979), 171-188. Zbl0399.22005MR528022
- [11] V.I. Oseledec: A multiplicative ergodic theorem. Ljapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc., 19 (1968), 197-231. Zbl0236.93034MR240280
- [12] Ya B. Pesin: Characteristic Lyapunov exponents and smooth ergodic theory. Russian Math. Surveys, 32 (1977), 55-114. Zbl0383.58011
- [13] M.S. Ragunathan: A proof of Oseledec's multiplicative ergodic theorem. Israel J. Math., 32 (1979) 356-362. Zbl0415.28013
- [14] A. Ramsay: Virtual groups and group actions. Advances in Math., 6 (1971), 253-322. Zbl0216.14902MR281876
- [15] M. Rees: Tangentially distal flows, (Preprint). Zbl0438.58024
- [16] K. Schmidt: Cocycles on ergodic transformation groups. Macmillain Lectures in Math., no. 1, Macmillan Co. of India, Delhi, 1977. Zbl0421.28017MR578731
- [17] R.J. Zimmer: Extensions of ergodic group actions. Illinois J. Math., 20 (1976), 373-409. Zbl0334.28015MR409770
- [18] R.J. Zimmer: Ergodic actions with generalized discrete spectrum. Illinois J. Math., 20 (1976), 555-588. Zbl0349.28011MR414832
- [19] R.J. Zimmer: Amenable ergodic group actions and an application to Poisson boundaries of random walks. J. Funct. Anal., 27 (1978), 350-372. Zbl0391.28011MR473096
- [20] R.J. Zimmer: Induced and amenable ergodic actions of Lie groups. Ann. Scient. Ec. Norm. Sup., 11 (1978), 407-428. Zbl0401.22009MR521638