Volume preserving actions of lattices in semisimple groups on compact manifolds

Robert Zimmer

Publications Mathématiques de l'IHÉS (1984)

  • Volume: 59, page 5-33
  • ISSN: 0073-8301

How to cite

top

Zimmer, Robert. "Volume preserving actions of lattices in semisimple groups on compact manifolds." Publications Mathématiques de l'IHÉS 59 (1984): 5-33. <http://eudml.org/doc/104000>.

@article{Zimmer1984,
author = {Zimmer, Robert},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {volume preserving actions; lattices; semisimple Lie groups; compact manifolds; superrigidity theorem for cocycles; Riemannian metric},
language = {eng},
pages = {5-33},
publisher = {Institut des Hautes Études Scientifiques},
title = {Volume preserving actions of lattices in semisimple groups on compact manifolds},
url = {http://eudml.org/doc/104000},
volume = {59},
year = {1984},
}

TY - JOUR
AU - Zimmer, Robert
TI - Volume preserving actions of lattices in semisimple groups on compact manifolds
JO - Publications Mathématiques de l'IHÉS
PY - 1984
PB - Institut des Hautes Études Scientifiques
VL - 59
SP - 5
EP - 33
LA - eng
KW - volume preserving actions; lattices; semisimple Lie groups; compact manifolds; superrigidity theorem for cocycles; Riemannian metric
UR - http://eudml.org/doc/104000
ER -

References

top
  1. [1] C. DELAROCHE and A. KIRILLOV, Sur les relations entre l'espace dual d'un groupe et la structure de ses sous-groupes fermés, Séminaire Bourbaki, No. 343 (1967/1968). Zbl0214.04602
  2. [2] Y. DERRIENNIC, Sur le théorème ergodique sous-additif, C. R. Acad. Sci. 281, Paris (1975), Série A, 985-988. Zbl0327.60028MR53 #763
  3. [3] H. FURSTENBERG and H. KESTEN, Products of random matrices, Ann. Math. Stat. 31 (1960), 457-469. Zbl0137.35501MR22 #12558
  4. [4] H. FURSTENBERG, Rigidity and cocycles for ergodic actions of semisimple groups [after G. A. Margulis and R. Zimmer], Séminaire Bourbaki, No. 559 (1979/1980). Zbl0471.22007
  5. [5] S. HELGASON, Differential Geometry and Symmetric Spaces, New York, Academic Press, 1962. Zbl0111.18101MR26 #2986
  6. [6] D. KAZHDAN, Connection of the dual space of a group with the structure of its closed subgroups, Funct. Anal. Appl. 1 (1967), 63-65. Zbl0168.27602MR35 #288
  7. [7] J. F. C. KINGMAN, The ergodic theory of subadditive stochastic processes, J. Royal Stat. Soc. B30 (1968), 499-510. Zbl0182.22802MR40 #8114
  8. [8] S. KOBAYASHI, Transformation groups in differential geometry, New York, Springer, 1972. Zbl0246.53031MR50 #8360
  9. [9] G. A. MARGULIS, Discrete groups of motions of manifolds of non-positive curvature, A.M.S. Translations 109 (1977), 33-45. Zbl0367.57012
  10. [10] D. MONTGOMERY and L. ZIPPIN, Topological Transformation Groups, New York, Interscience, 1955. Zbl0068.01904MR17,383b
  11. [11] G. D. MOSTOW, Strong rigidity of locally symmetric spaces, Annals of Math. Studies, No. 78 (1973). Zbl0265.53039MR52 #5874
  12. [12] G. D. MOSTOW, Intersection of discrete subgroups with Cartan subgroups, J. Indian Math. Soc. 34 (1970), 203-214. Zbl0235.22019MR58 #11228
  13. [13] R. PALAIS, Seminar on the Atiyah-Singer Index Theorem, Annals of Math. Studies, No. 57. Zbl0202.23103MR33 #6649
  14. [14] Ya. B. PESIN, Lyapunov characteristic exponents and smooth ergodic theory, Russian Math. Surveys 32 (1977), 55-114. Zbl0383.58011
  15. [15] G. PRASAD and M. S. RAGHUNATHAN, Cartan subgroups and lattices in semisimple groups, Annals of Math. 96 (1972), 296-317. Zbl0245.22013MR46 #1965
  16. [16] M. S. RAGHUNATHAN, On the congruence subgroup problem, Publ. Math. I.H.E.S. 46 (1976), 107-161. Zbl0347.20027MR58 #22325
  17. [17] K. SCHMIDT, Amenability, Kazhdan's property T, strong ergodicity, and invariant means for group actions, Erg. Th. and Dyn. Sys. 1 (1981), 223-236. Zbl0485.28019MR83m:43001
  18. [18] S. P. WANG, On isolated points in the dual spaces of locally compact groups, Math. Ann. 218 (1975), 19-34. Zbl0332.22009MR52 #5863
  19. [19] A. WEIL, On discrete subgroups of Lie groups, I, II, Annals of Math. 72 (1960), 369-384, and ibid., 75 (1962), 578-602. Zbl0131.26602
  20. [20] D. ZELOBENKO, Compact Lie groups and their representations, Translations of Math. Monographs, vol. 40, A.M.S., Providence, R.I., 1973. Zbl0272.22006MR57 #12776b
  21. [21] R. J. ZIMMER, Extensions of ergodic group actions, Ill. J. Math. 20 (1976), 373-409. Zbl0334.28015MR53 #13522
  22. [22] R. J. ZIMMER, Amenable pairs of ergodic actions and the associated von Neumann algebras, Trans. A.M.S. 243 (1978), 271-286. Zbl0408.22011MR81e:22008
  23. [23] R. J. ZIMMER, Orbit spaces of unitary representations, ergodic theory, and simple Lie groups, Annals of Math. 106 (1977), 573-588. Zbl0393.22006MR57 #6286
  24. [24] R. J. ZIMMER, An algebraic group associated to an ergodic diffeomorphism, Comp. Math. 43 (1981), 59-69. Zbl0491.58020MR83d:22006
  25. [25] R. J. ZIMMER, On the cohomology of ergodic actions of semisimple Lie groups and discrete subgroups, Amer. J. Math. 103 (1981), 937-950. Zbl0475.22011MR83g:28037
  26. [26] R. J. ZIMMER, Strong rigidity for ergodic actions of semisimple Lie groups, Annals of Math. 112 (1980), 511-529. Zbl0468.22011MR82i:22011
  27. [27] R. J. ZIMMER, Orbit equivalence and rigidity of ergodic actions of Lie groups, Erg. Th. and Dyn. Sys. 1 (1981), 237-253. Zbl0485.22013MR84a:22019
  28. [28] R. J. ZIMMER, Ergodic theory, group representations, and rigidity, Bull. A.M.S. 6 (1982), 383-416. Zbl0532.22009MR83k:22033
  29. [29] R. J. ZIMMER, Ergodic Theory and Semisimple Groups, forthcoming. Zbl0571.58015
  30. [30] R. J. ZIMMER, Arithmetic groups acting on compact manifolds, Bull. A.M.S., to appear. Zbl0532.22012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.