On the local structure of a generic central set

Yosef Yomdin

Compositio Mathematica (1981)

  • Volume: 43, Issue: 2, page 225-238
  • ISSN: 0010-437X

How to cite

top

Yomdin, Yosef. "On the local structure of a generic central set." Compositio Mathematica 43.2 (1981): 225-238. <http://eudml.org/doc/89498>.

@article{Yomdin1981,
author = {Yomdin, Yosef},
journal = {Compositio Mathematica},
keywords = {topological normal forms; central set of a closed subset of n-space; cut locus},
language = {eng},
number = {2},
pages = {225-238},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {On the local structure of a generic central set},
url = {http://eudml.org/doc/89498},
volume = {43},
year = {1981},
}

TY - JOUR
AU - Yomdin, Yosef
TI - On the local structure of a generic central set
JO - Compositio Mathematica
PY - 1981
PB - Sijthoff et Noordhoff International Publishers
VL - 43
IS - 2
SP - 225
EP - 238
LA - eng
KW - topological normal forms; central set of a closed subset of n-space; cut locus
UR - http://eudml.org/doc/89498
ER -

References

top
  1. [1] TH. Bröcker and L. Lander: Differentiable germs and catastrophes. London Math. Society Lect. Notes series, 17. Cambridge University Press, 1975. Zbl0302.58006MR494220
  2. [2] M. Buchner: Stability of the cut locus in dimensions less than or equal to six. Inventiones Math., 43 (1977) 199-231. Zbl0365.58010MR482816
  3. [3] M. Buchner: The structure of the cut locus in dimension less than or equal to six. Compositio Math., 37, 1 (1978) 103-119. Zbl0407.58008MR501100
  4. [4] F.H. Clarke: Generalized gradients and applications. Trans. Amer. Math. Soc., 205 (1975) 247-262. Zbl0307.26012MR367131
  5. [5] F.H. Clarke: On the inverse function theorem. Pacific J. Math., 64 (1976) 97-102. Zbl0331.26013MR425047
  6. [6] R.O. Duda and P.E. Hart: Pattern Classification and Scene Analysis. Wiley, 1973. Zbl0277.68056
  7. [7] E.J.N. Looijenga: Structural stability of smooth families of C∞-functions. Doctoral thesis, Universiteit van Amsterdam, 1974. 
  8. [8] D. Milman: Eine geometrische Ungleihung und ihre Anvendung (Die zentrale Menge des Gebites und die Erkennung des Gebites durch sie). In "General Inequalities ", v. 2., edited by E.F. Beckenbach (to appear). Zbl0432.53001MR608260
  9. [9] D. Milman and Z. Waksman: On topological properties of the central set of a bounded domain in Rm (to appear). Zbl0454.57004
  10. [10] D. Milman: The central function of the boundary of a domain and its differentiable properties (to appear). Zbl0448.53006MR593216
  11. [11] R. Thom: Sur le cut-locus d'une varieté plongée. J. Diff. Geom., 6 (1972) 577-586. Zbl0248.57010MR391131
  12. [12] C.T.C. Wall: Geometric properties of generic differentiable manifolds: in "Geometry and Topology", Proceeding of the III Latin American School of Mathematics, Rio de Janero, 1976, Lecture Notes in Math., 597, 707-774. Zbl0361.58004MR494233

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.