The structure of the cut locus in dimension less than or equal to six

Michael A. Buchner

Compositio Mathematica (1978)

  • Volume: 37, Issue: 1, page 103-119
  • ISSN: 0010-437X

How to cite

top

Buchner, Michael A.. "The structure of the cut locus in dimension less than or equal to six." Compositio Mathematica 37.1 (1978): 103-119. <http://eudml.org/doc/89372>.

@article{Buchner1978,
author = {Buchner, Michael A.},
journal = {Compositio Mathematica},
keywords = {Generic Cut Locus; Compact N-Dimensional Manifolds; Stable Cut Locus; Singularity Theory},
language = {eng},
number = {1},
pages = {103-119},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {The structure of the cut locus in dimension less than or equal to six},
url = {http://eudml.org/doc/89372},
volume = {37},
year = {1978},
}

TY - JOUR
AU - Buchner, Michael A.
TI - The structure of the cut locus in dimension less than or equal to six
JO - Compositio Mathematica
PY - 1978
PB - Sijthoff et Noordhoff International Publishers
VL - 37
IS - 1
SP - 103
EP - 119
LA - eng
KW - Generic Cut Locus; Compact N-Dimensional Manifolds; Stable Cut Locus; Singularity Theory
UR - http://eudml.org/doc/89372
ER -

References

top
  1. [1] M. Buchner: Stability of the cut locus in dimensions less than or equal to six. Inventiones Math., 43 (1977) 199-231. Zbl0365.58010MR482816
  2. [2] M. Buchner: Triangulation of the Real Analytic Cut Locus. Proc. of the A.M.S. Vol. 64, No. 1, May 1977. MR474133
  3. [3] J.J. Duistermaat: Oscillatory integrals, Lagrange immersions and unfoldings of singularities. Comm. Pure Appl. Math., vol. XXVII (1974) 207-281. Zbl0285.35010MR405513
  4. [4] J.N. Mather: Stability of C∞ mappings II. Infinitesimal stability implies stability. Ann. of Math. vol. 89 (1969) 254-291. Zbl0177.26002
  5. [5] J.N. Mather: Stability of C∞ mappings, IV; Classification of stable germs by R-algebras. IHES No. 37 (1969) 223-248. Zbl0202.55102
  6. [6] J.N. Mather: Stability of C∞ mappings, V, transversality. Advances in Mathematics, 4 (1970) 301-336. Zbl0207.54303
  7. [7] S.B. Myers: Connections between differential geometry and topology: I. Simply connected surfaces. Duke Math. J., 1 (1935) 376-391. Zbl0012.27502MR1545884JFM61.0787.02
  8. [8] S.B. Myers: Connections between differential geometry and topology: II. Closed surfaces. Duke Math. J., 2 (1936) 95-102. Zbl0013.32201MR1545908JFM62.0861.02
  9. [9] V. Ozols: Cut loci in Riemannian manifolds. Tohoku Math. J. Second Series 26 (1974) 219-227. Zbl0285.53034MR390967
  10. [10] H. Poincaré: Trans. Amer. Math. Soc., 6 (1905) 243. JFM36.0669.01
  11. [11] D. Schaeffer: A regularity theorem for conservation laws. Advances in Mathematics11 (1973) 368-386. Zbl0267.35009MR326178
  12. [12] R. Thom: Temporal evolution of catastrophes in Topology and its Applications, edited by S. Thomeier. Marcel Dekker, Inc.N.Y. Zbl0305.57026MR372925
  13. [13] G. Wasserman: Stability of unfoldings. Lecture Notes in Mathematics393 (1974). Zbl0288.57017MR410789
  14. [14] A. Weinstein: The cut locus and conjugate locus of a Riemannian manifold. Ann. of Math., 87 (1968) 29-41. Zbl0159.23902MR221434
  15. [15] J.H.C. Whitehead: On the covering of a complete space by the geodesics through a point. Ann. of Math., 36 (1935) 679-704. Zbl0012.27802MR1503245
  16. [16] Dubois, Dufour and Stanek: La théorie des catastrophes iv. Déploiments universels et leurs catastrophes. Ann. Inst. Henri Poincaré, Vol. XXIV, No. 3 (1976) 261-300. Zbl0407.58015MR426023
  17. [17] D. Singer, H. Gluck: The existence of nontriangulable cut loci. Bull. Amer. Math. Soc., 82 (1976) 599-602. Zbl0338.53045MR415539

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.