Excess intersection of divisors
Compositio Mathematica (1981)
- Volume: 43, Issue: 3, page 281-296
- ISSN: 0010-437X
Access Full Article
topHow to cite
topLazarsfeld, Robert. "Excess intersection of divisors." Compositio Mathematica 43.3 (1981): 281-296. <http://eudml.org/doc/89502>.
@article{Lazarsfeld1981,
author = {Lazarsfeld, Robert},
journal = {Compositio Mathematica},
keywords = {decomposition of intersection class; Chow group},
language = {eng},
number = {3},
pages = {281-296},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {Excess intersection of divisors},
url = {http://eudml.org/doc/89502},
volume = {43},
year = {1981},
}
TY - JOUR
AU - Lazarsfeld, Robert
TI - Excess intersection of divisors
JO - Compositio Mathematica
PY - 1981
PB - Sijthoff et Noordhoff International Publishers
VL - 43
IS - 3
SP - 281
EP - 296
LA - eng
KW - decomposition of intersection class; Chow group
UR - http://eudml.org/doc/89502
ER -
References
top- [1] W. Fulton: Rational equivalence for singular varieties. Publ. Math. IHES.45 (1975) 147-167. Zbl0332.14002MR404257
- [2] W. Fulton and R. Macpherson: Intersecting cycles on an algebraic variety, in P. Holm, ed., Real and Complex Singularities, Oslo1976 (Sijthoff and Noordhoff) 179-197. Zbl0385.14002MR569045
- [3] W. Fulton and R. Macpherson: Defining algebraic intersections, in L. Olson, ed., Algebraic Geometry, Lect. Notes in Math.687 (1978) 1-30. Zbl0405.14003MR527228
- [4] A. Grothendieck and J. Diendonné: Eléments de géométrie algébrique IV. Publ. Math. I.H.E.S.32 (1967). Zbl0153.22301
- [5] B. Segre: On limits of algebraic varieties. Proc. London Math. Soc.47 (1940) 351-403. Zbl0028.42002MR8172JFM68.0371.01
- [6] J.-P. Serre: Algebre locale multiplicities. Lect. Notes in Math.11 (1965). Zbl0142.28603MR201468
- [7] F. Severi: Il concetto generale di multiplicita della soluzioni per sistemi de equazioni algebriche e la teoria dell'eliminazione. Annali di Math.26 (1947) 221-270. [Reprinted in Memoire Scelte, Vol. I, where the relevant passage appears on p. 372]. Zbl0031.26004MR27552
- [8] J.-L. Verdier: Le théorem de Riemann-Roch pour les intersections complètes, in A. Douady and J.-L. Verdier, Seminaire de géométrie analytique, Astérisque36-37 (1976) Exposé IX. Zbl0334.14026MR444657
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.