Traces of pluriharmonic functions

Paolo de Bartolomeis; Giuseppe Tomassini

Compositio Mathematica (1981)

  • Volume: 44, Issue: 1-3, page 29-39
  • ISSN: 0010-437X

How to cite

top

de Bartolomeis, Paolo, and Tomassini, Giuseppe. "Traces of pluriharmonic functions." Compositio Mathematica 44.1-3 (1981): 29-39. <http://eudml.org/doc/89519>.

@article{deBartolomeis1981,
author = {de Bartolomeis, Paolo, Tomassini, Giuseppe},
journal = {Compositio Mathematica},
keywords = {traces of pluriharmonic functions; tangential linear differential operators; currents; Riemann-Hilbert problem; Cauchy-Dirichlet problem},
language = {eng},
number = {1-3},
pages = {29-39},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {Traces of pluriharmonic functions},
url = {http://eudml.org/doc/89519},
volume = {44},
year = {1981},
}

TY - JOUR
AU - de Bartolomeis, Paolo
AU - Tomassini, Giuseppe
TI - Traces of pluriharmonic functions
JO - Compositio Mathematica
PY - 1981
PB - Sijthoff et Noordhoff International Publishers
VL - 44
IS - 1-3
SP - 29
EP - 39
LA - eng
KW - traces of pluriharmonic functions; tangential linear differential operators; currents; Riemann-Hilbert problem; Cauchy-Dirichlet problem
UR - http://eudml.org/doc/89519
ER -

References

top
  1. [1] T. Audibert: Caractérisation locale par des opérateurs differentiels des restrictions à la sphère de Cn des fonctions pluriharmoniques C.R.A.S. (1977) A2841029-1031. Zbl0346.31004MR432917
  2. [2] E. Bedford: (∂∂)b and the real part of CR functionsIndiana Univ. Math. J. (1980) 293333-340. Zbl0441.32008
  3. [3] E. Bedford, P. Federbush: Pluriharmonic boundary valuesTohoku Math. (1974) 26505-511. Zbl0298.31012MR361160
  4. [4] V. Belosapka: Functions pluriharmonic on manifolds Math. U.S.S.R. Isvestija (1978) 12439-447. Zbl0452.31002
  5. [5] P. de Bartolomeis, G. Tomassini: Traces of pluriharmonic functions Analytic Functions Kozubnik1979Lecture Notes in Math.798Springer (1980) 10-17. Zbl0431.32006MR577445
  6. [6] J.J. Kohn, U. Rossi: On the extension of holomorphic functions from the boundary of a complex manifoldAnn. of Math. (1965) 81451-473. Zbl0166.33802MR177135
  7. [7] G. Laville: Fonctions pluriharmoniques et solution fondamentale d'un opérateur du 4e ordreBull. Sc. Math.2s. (1977) 101305-317. Zbl0397.35021MR477147
  8. [8] S. Lojasiewicz, G. Tomassini: Valeurs au bord des formes holomorphes Several Complex Variables, Proceedings of International Conferences, Cortona Italy 1976- 1977222-245Scuola Normale Superiore, Pisa (1978). Zbl0445.58028MR681313
  9. [9] J. Polking, R.O. Wells: Boundary values of Dolbeault Cohomology classes and a generalized Bochner-Hartogs TheoremAbh. Math. Sem. Univ. Hamburg (1978) 473-24. Zbl0379.32019MR504111
  10. [10] G.B. Rizza: Dirichlet problem for n-harmonic functions and related geometrical propertiesMath. Ann. Bd. (1955) 130s.202-218. Zbl0067.33004MR74881

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.