Page 1 Next

Displaying 1 – 20 of 40

Showing per page

A Riemann-Hilbert problem with a vanishing coefficient and applications to Toeplitz operators

A. Perälä, J. A. Virtanen, L. Wolf (2013)

Concrete Operators

We study the homogeneous Riemann-Hilbert problem with a vanishing scalar-valued continuous coefficient. We characterize non-existence of nontrivial solutions in the case where the coefficient has its values along several rays starting from the origin. As a consequence, some results on injectivity and existence of eigenvalues of Toeplitz operators in Hardy spaces are obtained.

Initial boundary value problem for the mKdV equation on a finite interval

Anne Boutet de Monvel, Dmitry Shepelsky (2004)

Annales de l’institut Fourier

We analyse an initial-boundary value problem for the mKdV equation on a finite interval ( 0 , L ) by expressing the solution in terms of the solution of an associated matrix Riemann-Hilbert problem in the complex k -plane. This RH problem is determined by certain spectral functions which are defined in terms of the initial-boundary values at t = 0 and x = 0 , L . We show that the spectral functions satisfy an algebraic “global relation” which express the implicit relation between all boundary values in terms of spectral...

Le problème de Riemann Hilbert sur une variété analytique complexe

R. Gérard (1969)

Annales de l'institut Fourier

Le problème de Riemann-Hilbert sur une variété complexe V s’énonce de la manière suivante : soit A un sous-ensemble analytique de V de codimension un en chacun de ses points et χ une représentation de Π 1 ( V - A ) dans Gl ( n , C . Existe-t-il un système de Pfaff d f = ω f du type de Fuchs où ω Ω n X n ( V , A ) (J. de Math. Pures et Appl., 47, (1968)) dont la monodromie soit la classe de la représentation χ  ?On montre en particulier que si V est une variété de Stein contractile et si les composantes irréductibles de A sont sans singularités...

Long time asymptotics of the Camassa–Holm equation on the half-line

Anne Boutet de Monvel, Dmitry Shepelsky (2009)

Annales de l’institut Fourier

We study the long-time behavior of solutions of the initial-boundary value (IBV) problem for the Camassa–Holm (CH) equation u t - u t x x + 2 u x + 3 u u x = 2 u x u x x + u u x x x on the half-line x 0 . The paper continues our study of IBV problems for the CH equation, the key tool of which is the formulation and analysis of associated Riemann–Hilbert factorization problems. We specify the regions in the quarter space-time plane x > 0 , t > 0 having qualitatively different asymptotic pictures, and give the main terms of the asymptotics in terms of spectral data...

Loop spaces and Riemann-Hilbert problems

G. Khimshiashvili (2007)

Banach Center Publications

We present a survey of recent results concerned with generalizations of the classical Riemann-Hilbert transmission problem in the context of loop spaces. Specifically, we present a general formulation of a Riemann-Hilbert problem with values in an almost complex manifold and illustrate it by discussing two particular cases in more detail. First, using the generalized Birkhoff factorization theorem of A. Pressley and G. Segal we give a criterion of solvability for generalized Riemann-Hilbert problems...

Currently displaying 1 – 20 of 40

Page 1 Next