Minimal models for elliptic curves with complex multiplication
Compositio Mathematica (1982)
- Volume: 45, Issue: 2, page 155-164
- ISSN: 0010-437X
Access Full Article
topHow to cite
topGross, Benedict H.. "Minimal models for elliptic curves with complex multiplication." Compositio Mathematica 45.2 (1982): 155-164. <http://eudml.org/doc/89532>.
@article{Gross1982,
author = {Gross, Benedict H.},
journal = {Compositio Mathematica},
keywords = {minimal models; elliptic curves with complex multiplication; Néron model; differential of Weierstraß model},
language = {eng},
number = {2},
pages = {155-164},
publisher = {Martinus Nijhoff Publishers},
title = {Minimal models for elliptic curves with complex multiplication},
url = {http://eudml.org/doc/89532},
volume = {45},
year = {1982},
}
TY - JOUR
AU - Gross, Benedict H.
TI - Minimal models for elliptic curves with complex multiplication
JO - Compositio Mathematica
PY - 1982
PB - Martinus Nijhoff Publishers
VL - 45
IS - 2
SP - 155
EP - 164
LA - eng
KW - minimal models; elliptic curves with complex multiplication; Néron model; differential of Weierstraß model
UR - http://eudml.org/doc/89532
ER -
References
top- [1] M. Deuring: Die Klassenkörper der Komplexen Multiplication. Ency. der Math. Wiss. Band I, 2. Teil, Heft 10, Teil II (1958). MR167481
- [2] B. Gross: Arithmetic on elliptic curves with complex multiplication. Springer Lecture Notes776 (1980). Zbl0433.14032MR563921
- [3] S. Lang: Elliptic functions. Reading: Addison-Wesley (1973). Zbl0316.14001MR409362
- [4] A. Néron: Modèles minimaux des variétés abéliennes sur les corps locaux et globaux. IHES Publ. Math. No. 21 (1964) 361-483. Zbl0132.41403MR179172
- [5] J.T. Tate: Algorithm for determining the type of singular fiber in an elliptic pencil. Springer Lecture Notes476 (1975) 33-52. Zbl1214.14020MR393039
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.