# Minimal models for elliptic curves with complex multiplication

Compositio Mathematica (1982)

- Volume: 45, Issue: 2, page 155-164
- ISSN: 0010-437X

## Access Full Article

top## How to cite

topGross, Benedict H.. "Minimal models for elliptic curves with complex multiplication." Compositio Mathematica 45.2 (1982): 155-164. <http://eudml.org/doc/89532>.

@article{Gross1982,

author = {Gross, Benedict H.},

journal = {Compositio Mathematica},

keywords = {minimal models; elliptic curves with complex multiplication; Néron model; differential of Weierstraß model},

language = {eng},

number = {2},

pages = {155-164},

publisher = {Martinus Nijhoff Publishers},

title = {Minimal models for elliptic curves with complex multiplication},

url = {http://eudml.org/doc/89532},

volume = {45},

year = {1982},

}

TY - JOUR

AU - Gross, Benedict H.

TI - Minimal models for elliptic curves with complex multiplication

JO - Compositio Mathematica

PY - 1982

PB - Martinus Nijhoff Publishers

VL - 45

IS - 2

SP - 155

EP - 164

LA - eng

KW - minimal models; elliptic curves with complex multiplication; Néron model; differential of Weierstraß model

UR - http://eudml.org/doc/89532

ER -

## References

top- [1] M. Deuring: Die Klassenkörper der Komplexen Multiplication. Ency. der Math. Wiss. Band I, 2. Teil, Heft 10, Teil II (1958). MR167481
- [2] B. Gross: Arithmetic on elliptic curves with complex multiplication. Springer Lecture Notes776 (1980). Zbl0433.14032MR563921
- [3] S. Lang: Elliptic functions. Reading: Addison-Wesley (1973). Zbl0316.14001MR409362
- [4] A. Néron: Modèles minimaux des variétés abéliennes sur les corps locaux et globaux. IHES Publ. Math. No. 21 (1964) 361-483. Zbl0132.41403MR179172
- [5] J.T. Tate: Algorithm for determining the type of singular fiber in an elliptic pencil. Springer Lecture Notes476 (1975) 33-52. Zbl1214.14020MR393039

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.