Sur la résolubilité locale des équations d'Einstein

Jacques Gasqui

Compositio Mathematica (1982)

  • Volume: 47, Issue: 1, page 43-69
  • ISSN: 0010-437X

How to cite

top

Gasqui, Jacques. "Sur la résolubilité locale des équations d'Einstein." Compositio Mathematica 47.1 (1982): 43-69. <http://eudml.org/doc/89558>.

@article{Gasqui1982,
author = {Gasqui, Jacques},
journal = {Compositio Mathematica},
keywords = {Ricci curvature; Einstein's equation; Riemannian metric},
language = {fre},
number = {1},
pages = {43-69},
publisher = {Martinus Nijhoff Publishers},
title = {Sur la résolubilité locale des équations d'Einstein},
url = {http://eudml.org/doc/89558},
volume = {47},
year = {1982},
}

TY - JOUR
AU - Gasqui, Jacques
TI - Sur la résolubilité locale des équations d'Einstein
JO - Compositio Mathematica
PY - 1982
PB - Martinus Nijhoff Publishers
VL - 47
IS - 1
SP - 43
EP - 69
LA - fre
KW - Ricci curvature; Einstein's equation; Riemannian metric
UR - http://eudml.org/doc/89558
ER -

References

top
  1. [1] J.P. Bourguignon: Déformations des métriques d'Einstein (à paraître). Zbl0473.53040
  2. [2] E. Cartan: Sur la théorie des systèmes en involution et ses applications à la relativité, Oeuvres complètes, Partie II, Vol. 2, Gauthier-Villars, Paris, 1955, pp. 1199-1229. 
  3. [3] J. Gasqui: Sur les structures de courbure d'ordre 2 dans Rn. J. Differential Geometry12 (1977) 493-497. Zbl0381.53002MR512920
  4. [4] J. Gasqui: Connexions à courbure de Ricci donnée. Math. Z.168 (1979) 167-179. Zbl0393.53012MR544703
  5. [5] J. Gasqui and H. Goldschmidt: Déformations infinitésimales des espaces riemanniens localement symétriques (à paraître). Zbl0517.53046
  6. [6] H. Goldschmidt: Existence theorems for linear partial differential equations. Ann. of Math.86 (1967) 246-270. Zbl0154.35103MR219859
  7. [7] H. Godschmidt: Integrability criteria for systems of non-linear partial differential equations. J. Differential Geometry1 (1967) 269-307. Zbl0159.14101MR226156
  8. [8] H. Goldschmidt: Sur la structure des équations de Lie I. Le troisième théorème fondamental. J. Differential Geometry6 (1972) 357-373. Zbl0235.58011MR301768
  9. [9] V. Guillemin and S. Sternberg: An algebraic model of transitive differential geometry. Bull. Amer. Math. Soc.70 (1964) 16-47. Zbl0121.38801MR170295
  10. [10] S. Kobayashi and K. Nomizu: Foundations of Differential Geometry, vol. 1. Interscience Publishers, New York, 1963. Zbl0119.37502MR152974
  11. [11] A. Lichnerowicz: Propagateurs et commutateurs en relativité générale. I.H.E.S. Public. Math.10 (1961). Zbl0098.42607MR157736
  12. [12] B. Malgrange: Systèmes différentiels à coefficients constants, Séminaire Bourbaki 15e année 1962- 1963, Exp. 246. Zbl0141.27304
  13. [13] D.G. Quillen: Formai properties of over determined systems of linear partial differential equations. Ph.D. thesis, Harvard University, 1964. 
  14. [14] H. Weyl: Classical groups, Princeton Mathematical series no. 1. Princeton University Press, 1946. Zbl1024.20501JFM65.0058.02
  15. [15] S.T. Yau: On the Ricci curvature of a compact Kähler manifold and the complex Mongre-Ampère equation I. Comm. Pure and Appl. Math.XXXI (1978) 339-411. Zbl0369.53059MR480350
  16. [16] D. Detruck and J. Kazdan: Some regularity theorems in Riemannian Geometry. Ann. Scient. Ec. Norm. Sup. (à paraître). Zbl0486.53014
  17. [17] Y. Foures-Bruhat: Sur l'intégration des équations de la relativité générale. J. Rational Mech. Anal.5 (1956) 951-966. Zbl0075.21602MR85123

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.