Rings of Hilbert modular forms

E. Thomas; A. T. Vasquez

Compositio Mathematica (1983)

  • Volume: 48, Issue: 2, page 139-165
  • ISSN: 0010-437X

How to cite

top

Thomas, E., and Vasquez, A. T.. "Rings of Hilbert modular forms." Compositio Mathematica 48.2 (1983): 139-165. <http://eudml.org/doc/89589>.

@article{Thomas1983,
author = {Thomas, E., Vasquez, A. T.},
journal = {Compositio Mathematica},
keywords = {real quadratic fields; graded ring of Hilbert modular forms; complete intersection ring; principal congruence subgroups; Gorenstein rings},
language = {eng},
number = {2},
pages = {139-165},
publisher = {Martinus Nijhoff Publishers},
title = {Rings of Hilbert modular forms},
url = {http://eudml.org/doc/89589},
volume = {48},
year = {1983},
}

TY - JOUR
AU - Thomas, E.
AU - Vasquez, A. T.
TI - Rings of Hilbert modular forms
JO - Compositio Mathematica
PY - 1983
PB - Martinus Nijhoff Publishers
VL - 48
IS - 2
SP - 139
EP - 165
LA - eng
KW - real quadratic fields; graded ring of Hilbert modular forms; complete intersection ring; principal congruence subgroups; Gorenstein rings
UR - http://eudml.org/doc/89589
ER -

References

top
  1. [1] M.F. Atiyah and I.G. Macdonald: Introduction to Commutative Algebra, Addison-Wesley, Reading, Mass., 1969. Zbl0175.03601MR242802
  2. [2] Z.I. Borevich and I.R. Shafarevich: Number Theory, Academic Press, New York, 1969. Zbl0145.04902
  3. [3] E. Freitag: Lokale und globale invarianten der Hilbertschen modulgruppe, Invent. Math.17 (1972), 106-134. Zbl0272.32010MR318063
  4. [4] G. Van Der Geer: Hilbert modular forms for the field Q(√6), Math. Ann. 233 (1978), 163-179. _ Zbl0357.10014
  5. [5] G. Van Der Geer and D. Zagier: The Hilbert modular group for the field Q(√13), Invent. Math.42 (1977), 93-133. Zbl0366.10024
  6. [6] W. Hammond: The Hilbert modular surface of a real quadratic field, Math. Ann.200 (1973), 25-45. Zbl0236.14014MR337989
  7. [7] F. Hirzebruch: Hilbert modular surfaces, L'Enseignement Math.19 (1974), 182-281. Zbl0285.14007MR393045
  8. [8] F. Hirzebruch: Hilbert's modular group for the field Q(√5) and the cubic diagonal surface of Clebsch and Klein, Russian Math. Surveys31 (1976), 96-110. Zbl0356.14010
  9. [9] F. Hirzebruch: The ring of Hilbert modular forms for real quadratic number fields of small discriminant, Lecture Notes in Math. (vol. 627), Springer-Verlag, Berlin, 1977. Zbl0369.10017MR480355
  10. [10] A. Prestel: Die elliptische Fixpunte der Hilbertschen Modulgruppe, Math. Ann. 117 (1968),181-209. Zbl0159.11302MR228439
  11. [11] H. Shimizu: On discontinuous groups operating on the product of upper half planes, Ann. of Math.77 (1963), 33-71. Zbl0218.10045MR145106
  12. [12] R.P. Stanley: Invariants of finite groups and their applications to combinatorics, Bull. A.M.S. (new series) 1 (1979), 443-594. Zbl0497.20002MR526968
  13. [13] R.P. Stanley: Hilbert functions of graded algebras, Advances in Mathematics28 (1978), 57-83. Zbl0384.13012MR485835
  14. [14] E. Thomas and A. Vasquez: Chern numbers of Hilbert modular varieties, J. für r. und ang. Math. 324 (1981), 192-210. Zbl0491.14019MR614525
  15. [15] M.-F. Vignéras: Invariants numériques des groupes de Hilbert, Math. Ann. 224 (1976), 189-215. Zbl0325.12004MR429755
  16. [16] D. Weisser: The arithmetic genus of the Hilbert modular variety and the elliptic fixed points of the Hilbert modular group, Math. Ann.257 (1981), 9-22. Zbl0467.10021MR630643

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.