Translation manifolds and the converse of Abel's theorem

John Little

Compositio Mathematica (1983)

  • Volume: 49, Issue: 2, page 147-171
  • ISSN: 0010-437X

How to cite

top

Little, John. "Translation manifolds and the converse of Abel's theorem." Compositio Mathematica 49.2 (1983): 147-171. <http://eudml.org/doc/89608>.

@article{Little1983,
author = {Little, John},
journal = {Compositio Mathematica},
keywords = {converse of Abel theorem; translation manifold; Lie-Wirtinger theorem; non-degenerate doubly translation type hypersurface; n-dimensional principally polarized abelian variety; canonically polarized Jacobian of smooth nonhyperelliptic curve},
language = {eng},
number = {2},
pages = {147-171},
publisher = {Martinus Nijhoff Publishers},
title = {Translation manifolds and the converse of Abel's theorem},
url = {http://eudml.org/doc/89608},
volume = {49},
year = {1983},
}

TY - JOUR
AU - Little, John
TI - Translation manifolds and the converse of Abel's theorem
JO - Compositio Mathematica
PY - 1983
PB - Martinus Nijhoff Publishers
VL - 49
IS - 2
SP - 147
EP - 171
LA - eng
KW - converse of Abel theorem; translation manifold; Lie-Wirtinger theorem; non-degenerate doubly translation type hypersurface; n-dimensional principally polarized abelian variety; canonically polarized Jacobian of smooth nonhyperelliptic curve
UR - http://eudml.org/doc/89608
ER -

References

top
  1. [1] A. Altman, and S. Kleiman: Introduction to Grotendieck Duality Theory. Lecture Notes in Mathematics, 146. Berlin, Springer-Verlag, 1970. Zbl0215.37201MR274461
  2. [2] W. Blaschke and K. Leichtweiss: Elementare Differentialgeometrie, 5 th ed. Berlin, Springer-Verlag, 1973. Zbl0264.53001MR350630
  3. [3] W. Blaschke and G. Bol: Geometrie der Gewebe. Berlin, Springer-Verlag, 1938. Zbl0020.06701JFM64.0727.03
  4. [4] G. Darboux: Leçons sur la Théorie Générale des Surfaces, 2nd ed. Paris, Gauthier-Villars, 1914. JFM45.0881.04
  5. [5] J. Eiesland: On a Certain Class of Algebraic Translation Surfaces. Amer. J. Math.29 (1908) 363-386. Zbl38.0642.04MR1506020JFM38.0642.04
  6. [6] J. Eiesland: On Translation Surfaces Connected with a Unicursal Quartic. Amer. J. Math.30 (1909) 170-208. Zbl39.0691.01MR1506037JFM39.0691.01
  7. [7] J. Fay: Theta Functions on Riemann Surfaces. Lecture Notes in Mathematics 352. Berlin, Springer-Verlag, 1973. Zbl0281.30013MR335789
  8. [8] P. Griffiths: Variations on a Theorem of Abel. Inv. Math.35 (1976) 321-390. Zbl0339.14003MR435074
  9. [9] T. Jambois: The Theorem of Torelli for Singular Curves. Transactions of the A.M.S. 239 (1978) 123-146. Zbl0444.14022MR498584
  10. [10] D. Mumford: Curves and their Jacobians. Ann Arbor, University of Michigan Press, 1975. Zbl0316.14010MR419430
  11. [11] H. Poincaré: Sur les Surfaces de Translation et les Fonctions Abéliennes. Bull. Soc. Math. de France29 (1901) 61-86. Zbl32.0459.04MR1504382JFM32.0459.04
  12. [12] H. Poincaré: Remarques Diverses sur les Fonctions Abéliennes. J. de Math. (Liouville), 5th Series, 1 (1895) 219-314. Zbl26.0510.01JFM26.0510.01
  13. [13] M. Rosenlicht: Equivalence Relations on Algebraic Curves. Annals of Math. 56 (1952) 169-191. Zbl0047.14503MR48856
  14. [14] M. Rosenlicht: Generalized Jacobian Varieties. Annals of Math. 59 (1954) 505-530. Zbl0058.37002MR61422
  15. [15] B. Saint-Donat: Variétés de Translation et Théoreme de Torelli. Comptes Rendus Series A280 (1975) 1611-1612. Zbl0304.14022MR469925
  16. [16] G. Scheffers: Das Abel'sche Theorem und das Lie'sche Theorem über Translationsflachen. Acta Math. 28 (1904) 65-91. JFM35.0426.01
  17. [17] J.-P. Serre: Groupes Alge{briques et Crops de Classes. Paris, Hermann, 1959. Zbl0097.35604
  18. [18] W. Wirtinger: Lies Translationsmannigfaltigkeiten und Abel'sche Integrale. Monatshefte für Math. und Phys. 46 (1938) 384-431. Zbl0019.18204JFM64.1337.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.