Le problème de Schottky et la conjecture de Novikov

Arnaud Beauville

Séminaire Bourbaki (1986-1987)

  • Volume: 29, page 101-112
  • ISSN: 0303-1179

How to cite

top

Beauville, Arnaud. "Le problème de Schottky et la conjecture de Novikov." Séminaire Bourbaki 29 (1986-1987): 101-112. <http://eudml.org/doc/110074>.

@article{Beauville1986-1987,
author = {Beauville, Arnaud},
journal = {Séminaire Bourbaki},
keywords = {Kadomtsev-Petviashvili equation; period matrices of compact Riemann surfaces; Schottky problem; (K-P) equation; Jacobians; Novikov's conjecture},
language = {fre},
pages = {101-112},
publisher = {Société Mathématique de France},
title = {Le problème de Schottky et la conjecture de Novikov},
url = {http://eudml.org/doc/110074},
volume = {29},
year = {1986-1987},
}

TY - JOUR
AU - Beauville, Arnaud
TI - Le problème de Schottky et la conjecture de Novikov
JO - Séminaire Bourbaki
PY - 1986-1987
PB - Société Mathématique de France
VL - 29
SP - 101
EP - 112
LA - fre
KW - Kadomtsev-Petviashvili equation; period matrices of compact Riemann surfaces; Schottky problem; (K-P) equation; Jacobians; Novikov's conjecture
UR - http://eudml.org/doc/110074
ER -

References

top
  1. [A] E. Arbarello - Fay's trisecant formula and a characterization of Jacobian varieties, Proceedings of the AMS Summer Institute on Algebraic Geometry, Bowdoin College (1985), à paraître. Zbl0645.14014
  2. [A - D 1] E. Arbarello, C. De Concini - On a set of equations characterizing Riemann matrices, Ann. of Math.120 (1984), 119-140. Zbl0551.14016MR750718
  3. [A - D 2] E. Arbarello, C. De Concini - Another proof of a conjecture of S.P. Novikov on periods of Abelian integrals on Riemann surfaces, Duke Math. J.54 (1987), 163-178. Zbl0629.14022MR885782
  4. [AM] A. Andreotti, A. Mayer - On period relations for abelian integrals on algebraic curves, Ann. Sc. Norm. Sup. Pisa21 (1967), 189-238. Zbl0222.14024MR220740
  5. [B] A. Beauvilie - Prym varieties and the Schottky problem, Inventiones Math.41 (1977), 149-196. Zbl0333.14013MR572974
  6. [B - D] A. Beauville, O. Debarre - Une relation entre deux approches du problème de Schottky, Inventiones Math.86 (1986), 195-207. Zbl0659.14021MR853450
  7. [D 1] O. Debarre - Sur la démonstration de A. Weil du théorème de Torelli pour les courbes, Compositio Math.58 (1986), 3-11. Zbl0623.32017MR834045
  8. [D 2] O. Debarre - Sur les variétés abéliennes dont le diviseur Θ est singulier en codimension 3 , Duke J. of Math. , à paraître. Zbl0699.14058
  9. [D 3] O. Debarre - La conjecture de la trisécante pour les variétés de Prym, à paraître. 
  10. [Do] R. Donagi - The tetragonal construction, Bull. Amer. Math. Soc.4 (1981), 181-185. Zbl0491.14016MR598683
  11. [F] E. Freitag - Die Irreduzibilität der Schottkyrelation (Bemerkung zu einem Satz von J. Igusa), Arch. Math.40 (1983), 255-259. Zbl0547.14022MR701272
  12. [G] R. Gunning - Some curves in abelian varieties, Inventiones Math.66 (1982), 377-389. Zbl0485.14009MR662597
  13. [vG] B. Van Geemen - Siegel modular forms vanishing on the moduli space of curves, Inventiones Math.78 (1984), 329-349. Zbl0568.14015MR767196
  14. [vG - vG] B. Van Gmmen, G. van der Geer - Kummer varieties and the moduli spaces of abelian varieties, Amer. J. of Math.108 (1986), 615-642. Zbl0612.14044MR844633
  15. [I 1] J. Igusa - Theta functions, Springer-Verlag, Berlin - Heidelberg - New York (1972). Zbl0251.14016MR325625
  16. [I 2] J. Igusa - On the irreducibility of Schottky's divisor, J. Fac. Sci. Tokyo28 (1981), 531-545. Zbl0501.14026MR656035
  17. [L] J. Little - Translation manifolds and the converse of Abel's theorem, Compositio Math.49 (1983), 147-171. Zbl0521.14017MR704389
  18. [M] D. Mumford - Prym varieties I. Contributions to Analysis, Academic Press, New York (1974), 325-350. Zbl0299.14018MR379510
  19. [M-B] L. Moret-Bailly - Variétés stablement rationnelles non rationnelles, Sém. Bourbaki, février 1985, exp. 643, Astérisque133-134 (1986), 223-236. Zbl0605.14044MR837222
  20. [R] Z. Ran - On subvarieties of abelian varieties, Inventiones Math.62 (1981) 459-479. Zbl0474.14016MR604839
  21. [S] F. Schottky - Zur Theorie der Abelschen Funktionen von vier Variabeln, J. Reine Angew. Math.102 (1888), 304-352. JFM20.0488.02
  22. [S - J] F. Schottky, H. Jung - Neue Sätze über Symmetralfunktionen und die Abel' schen Funktionen der Riemann'schen Theorie, S-B. Preuss. Akad. Wiss. (Berlin), Phys. Math. Kl.1 (1909), 282-297. JFM40.0489.03
  23. [Sh] T. Shiota - Characterization of Jacobian varieties in terms of soliton equations, Inventiones Math.83 (1986) , 333-382. Zbl0621.35097MR818357
  24. [V] J.-L. Verdier - Les représentations des algèbres de Lie affines : applications à quelques problèmes de physique, Sém. Bourbaki, Juin 1982, exp. 596, Astérisque92-93 (1982), 365-377. Zbl0508.17004MR689540
  25. [W 1] G. Welters - A characterization of non-hyperelliptic Jacobi varieties, Inventiones Math.120 (1984), 497-504. MR769160
  26. [W 2] G. Welters - A criterion for Jacobi varieties, Ann. of Math.120 (1984), 497-504. Zbl0574.14027MR769160
  27. [We] A. Weil - Zum Beweis des Torellischen Satzes, Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl.2a (1957), 33-53. Zbl0079.37002MR89483

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.