Infinitesimal variations of hodge structure (III) : determinantal varieties and the infinitesimal invariant of normal functions

Phillip A. Griffiths

Compositio Mathematica (1983)

  • Volume: 50, Issue: 2-3, page 267-324
  • ISSN: 0010-437X

How to cite

top

Griffiths, Phillip A.. "Infinitesimal variations of hodge structure (III) : determinantal varieties and the infinitesimal invariant of normal functions." Compositio Mathematica 50.2-3 (1983): 267-324. <http://eudml.org/doc/89626>.

@article{Griffiths1983,
author = {Griffiths, Phillip A.},
journal = {Compositio Mathematica},
keywords = {Hodge conjecture; infinitesimal variation of; polarized Hodge structure; determinantal variety; Torelli theorem; normal function of a primitive algebraic cycle},
language = {eng},
number = {2-3},
pages = {267-324},
publisher = {Martinus Nijhoff Publishers},
title = {Infinitesimal variations of hodge structure (III) : determinantal varieties and the infinitesimal invariant of normal functions},
url = {http://eudml.org/doc/89626},
volume = {50},
year = {1983},
}

TY - JOUR
AU - Griffiths, Phillip A.
TI - Infinitesimal variations of hodge structure (III) : determinantal varieties and the infinitesimal invariant of normal functions
JO - Compositio Mathematica
PY - 1983
PB - Martinus Nijhoff Publishers
VL - 50
IS - 2-3
SP - 267
EP - 324
LA - eng
KW - Hodge conjecture; infinitesimal variation of; polarized Hodge structure; determinantal variety; Torelli theorem; normal function of a primitive algebraic cycle
UR - http://eudml.org/doc/89626
ER -

References

top
  1. [1] E. Arbarello, M. Cornalba, P. Griffiths and J. Harris: Topics in the Theory of Algebraic Curves, To appear. 
  2. [2] J. Carlson and P. Griffiths: Infinitesimal variations of Hodge structure and the global Torelli problem. Journées de géométrie algébrique d'Angers, Sijthoff and Nordhoff (1980) 51-76. Zbl0479.14007MR605336
  3. [3] F. Elzein and S. Zucker: Extendability of the Abel-Jacobi map. To appear. 
  4. [4] R. Friedman: Hodge theory, degenerations, and the global Torelli problem. Thesis, Harvard University (1981). 
  5. [5] R. Friedman and R. Smith: The generic Torelli theorem for the Prym map. Invent. Math.67 (1982) 473-490. Zbl0506.14042MR664116
  6. [6] P. Griffiths and J. Harris: Principles of Algebraic Geometry, John Wiley, 1978. Zbl0408.14001MR507725
  7. [7] P. Griffiths: A theorem concerning the differential equations satisfied by normal functions associated to algebraic cycles. Amer. J. Math.101 (1979) 94-131. Zbl0453.14001MR527828
  8. [8] P. Griffiths: Periods of certain rational integrals. Ann. Math.90 (1969) 460-541. Zbl0215.08103MR260733
  9. [9] K. Kodaira and D.C. Spencer: On a theorem of Lefschetz and the lemma of Enriques-Severi-Zariski. Proc. Nat. Acad. Sci, U.S.A.39 (1953) 1273-78. Zbl0053.11702MR68286
  10. [10] M. Kuranishi: New proof for the existence of locally complete families of complex structures. In: Proceedings of the Conference on Complex Analysis, Minneapolis1964, NY, Springer-Verlag, 1965. Zbl0144.21102MR176496
  11. [11] I. Kynev: The degree of the Prym map is equal to one. Preprint. 
  12. [12] S. Lefschetz: L'Analysis Situs et la Geometrie Algebrique, Paris, Gauthier-Villars, 1924. Zbl50.0663.01JFM50.0663.01
  13. [13] B. Saint-Donat: On Petri's analysis of the linear system of quadrics through a canonical curve. Math. Ann.206 (1973) 157-175. Zbl0315.14010MR337983
  14. [14] D.C. Spencer and M. Shiffer: Functionals on finite Riemann surfaces, Princeton Univ. Press. Zbl0059.06901
  15. [15] S. Zucker: Generalized Intermediate Jacobians and the theorem on normal functions. Invent. Math.33 (1976) 185-222. Zbl0329.14008MR412186

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.