Infinitesimal variations of hodge structure (III) : determinantal varieties and the infinitesimal invariant of normal functions
Compositio Mathematica (1983)
- Volume: 50, Issue: 2-3, page 267-324
- ISSN: 0010-437X
Access Full Article
topHow to cite
topGriffiths, Phillip A.. "Infinitesimal variations of hodge structure (III) : determinantal varieties and the infinitesimal invariant of normal functions." Compositio Mathematica 50.2-3 (1983): 267-324. <http://eudml.org/doc/89626>.
@article{Griffiths1983,
author = {Griffiths, Phillip A.},
journal = {Compositio Mathematica},
keywords = {Hodge conjecture; infinitesimal variation of; polarized Hodge structure; determinantal variety; Torelli theorem; normal function of a primitive algebraic cycle},
language = {eng},
number = {2-3},
pages = {267-324},
publisher = {Martinus Nijhoff Publishers},
title = {Infinitesimal variations of hodge structure (III) : determinantal varieties and the infinitesimal invariant of normal functions},
url = {http://eudml.org/doc/89626},
volume = {50},
year = {1983},
}
TY - JOUR
AU - Griffiths, Phillip A.
TI - Infinitesimal variations of hodge structure (III) : determinantal varieties and the infinitesimal invariant of normal functions
JO - Compositio Mathematica
PY - 1983
PB - Martinus Nijhoff Publishers
VL - 50
IS - 2-3
SP - 267
EP - 324
LA - eng
KW - Hodge conjecture; infinitesimal variation of; polarized Hodge structure; determinantal variety; Torelli theorem; normal function of a primitive algebraic cycle
UR - http://eudml.org/doc/89626
ER -
References
top- [1] E. Arbarello, M. Cornalba, P. Griffiths and J. Harris: Topics in the Theory of Algebraic Curves, To appear.
- [2] J. Carlson and P. Griffiths: Infinitesimal variations of Hodge structure and the global Torelli problem. Journées de géométrie algébrique d'Angers, Sijthoff and Nordhoff (1980) 51-76. Zbl0479.14007MR605336
- [3] F. Elzein and S. Zucker: Extendability of the Abel-Jacobi map. To appear.
- [4] R. Friedman: Hodge theory, degenerations, and the global Torelli problem. Thesis, Harvard University (1981).
- [5] R. Friedman and R. Smith: The generic Torelli theorem for the Prym map. Invent. Math.67 (1982) 473-490. Zbl0506.14042MR664116
- [6] P. Griffiths and J. Harris: Principles of Algebraic Geometry, John Wiley, 1978. Zbl0408.14001MR507725
- [7] P. Griffiths: A theorem concerning the differential equations satisfied by normal functions associated to algebraic cycles. Amer. J. Math.101 (1979) 94-131. Zbl0453.14001MR527828
- [8] P. Griffiths: Periods of certain rational integrals. Ann. Math.90 (1969) 460-541. Zbl0215.08103MR260733
- [9] K. Kodaira and D.C. Spencer: On a theorem of Lefschetz and the lemma of Enriques-Severi-Zariski. Proc. Nat. Acad. Sci, U.S.A.39 (1953) 1273-78. Zbl0053.11702MR68286
- [10] M. Kuranishi: New proof for the existence of locally complete families of complex structures. In: Proceedings of the Conference on Complex Analysis, Minneapolis1964, NY, Springer-Verlag, 1965. Zbl0144.21102MR176496
- [11] I. Kynev: The degree of the Prym map is equal to one. Preprint.
- [12] S. Lefschetz: L'Analysis Situs et la Geometrie Algebrique, Paris, Gauthier-Villars, 1924. Zbl50.0663.01JFM50.0663.01
- [13] B. Saint-Donat: On Petri's analysis of the linear system of quadrics through a canonical curve. Math. Ann.206 (1973) 157-175. Zbl0315.14010MR337983
- [14] D.C. Spencer and M. Shiffer: Functionals on finite Riemann surfaces, Princeton Univ. Press. Zbl0059.06901
- [15] S. Zucker: Generalized Intermediate Jacobians and the theorem on normal functions. Invent. Math.33 (1976) 185-222. Zbl0329.14008MR412186
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.