Sur l'application d'Abel-Jacobi des variétés de Calabi-Yau de dimension trois

Claire Voisin

Annales scientifiques de l'École Normale Supérieure (1994)

  • Volume: 27, Issue: 2, page 209-226
  • ISSN: 0012-9593

How to cite

top

Voisin, Claire. "Sur l'application d'Abel-Jacobi des variétés de Calabi-Yau de dimension trois." Annales scientifiques de l'École Normale Supérieure 27.2 (1994): 209-226. <http://eudml.org/doc/82362>.

@article{Voisin1994,
author = {Voisin, Claire},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Calabi-Yau threefold; generic deformation; Abel-Jacobi map; variation of mixed Hodge structure},
language = {fre},
number = {2},
pages = {209-226},
publisher = {Elsevier},
title = {Sur l'application d'Abel-Jacobi des variétés de Calabi-Yau de dimension trois},
url = {http://eudml.org/doc/82362},
volume = {27},
year = {1994},
}

TY - JOUR
AU - Voisin, Claire
TI - Sur l'application d'Abel-Jacobi des variétés de Calabi-Yau de dimension trois
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1994
PB - Elsevier
VL - 27
IS - 2
SP - 209
EP - 226
LA - fre
KW - Calabi-Yau threefold; generic deformation; Abel-Jacobi map; variation of mixed Hodge structure
UR - http://eudml.org/doc/82362
ER -

References

top
  1. [1] A. ALBANO, Infinite Generation of the Griffiths Group : a Local Proof (Thesis, University of Utah, 1986). 
  2. [2] F. BARDELLI, Curves of Genus Three on a General Abelian Threefold and the Non Finite Generation of the Griffiths Group, dans : Arithmetic of complex manifolds ; Lecture Notes in Math., n° 1399 Springer, 1989, p. 10-26. Zbl0703.14004MR91a:14004
  3. [3] F. BARDELLI et S. MÜLLER-STACH, Algebraic Cycles on Certain Calabi-Yau Threefolds, preprint de l'Université de Pise, 1992. Zbl0791.14017
  4. [4] H. CLEMENS, Homological Equivalence, Modulo Algebraic Equivalence, is Not Finitely Generated (Inst. Hautes Études Sci., Publ. Math., vol. 58, 1983, p. 19-38). Zbl0529.14002MR86d:14043
  5. [5] H. CLEMENS, A Note on Some Formal Properties of the Infinitesimal Abel-Jacobi Mapping, dans Geometry today, E. ARBARELLO et al. éd. (Progress in Math., vol. 60, Birkhäuser, 1985, p. 69-73). Zbl0569.14020MR88g:14042
  6. [6] P. DELIGNE, Théorie de Hodge II (Inst. Hautes Études Sci., Publ. Math., vol. 40, 1971, p. 5-58). Zbl0219.14007MR58 #16653a
  7. [7] F. ELZEIN et S. ZÜCKER, Extendability of Normal Functions Associated to Algebraic cycles, dans : Topics in Transcendental Algebraic Geometry, P. GRIFFITHS éd. (Ann. of Math. Studies, Study, 106, Princeton University Press, 1984, p. 269-288). Zbl0545.14017MR756857
  8. [8] R. FRIEDMAN, On Threefolds with Trivial Canonical Bundle, preprint. Zbl0753.14035
  9. [9] M. GREEN, Griffiths' Infinitesimal Invariant and the Abel-Jacobi Map (J. Differential Geom., vol. 29, 1989, p. 545-555). Zbl0692.14003MR90c:14006
  10. [10] M. GREEN, The Period Map for Hypersurface Sections of High Degree of an Arbitrary Variety (Compositio Math., vol. 55, 1985, p. 135-156). Zbl0588.14004MR87b:32038
  11. [11] P. GRIFFITHS, Infinitesimal Variations of Hodge Structure III : Determinantal Varieties and the Infinitesimal Invariant of Normal Functions (Compositio Math., vol. 50, 1983, p. 267-324). Zbl0576.14009MR86e:32026c
  12. [12] P. GRIFFITHS, Periods of Integrals on Algebraic Manifolds I, II (Amer. J. Math., vol. 90, 1968, p. 568-626, 805-865). Zbl0183.25501MR37 #5215
  13. [13] P. GRIFFITHS, On the Periods of Certain Rational Integrals I, II (Ann. of Math., vol. 90, 1969, p. 460-541). Zbl0215.08103MR41 #5357
  14. [14] N. KATZ, The Regularity Theorem in Algebraic Geometry, dans : Actes du congrès international de Mathématiques, Nice, 1970, tome 1, p. 437-443. Zbl0235.14006MR57 #12512
  15. [15] S. O. KIM, Noether-Lefschetz Locus for Surfaces (Trans. Amer. Math. Soc., vol. 324, n° 1, 1991). Zbl0739.14019MR91f:14031
  16. [16] M. NORI, Cycles in the Generic Abelian Threefold (Proc. Indian Acad. Sci., vol. 99, 1989, p. 191-196). Zbl0725.14006MR90k:14003
  17. [17] K. PARANJAPE, Curves on Threefolds with Trivial Canonical Bundle (Proc. Indian Acad. Sci. Math. vol. 101, 1991, n° 3, p. 199-213). Zbl0759.14031MR93a:14036
  18. [18] C. VOISIN, Une remarque sur l'invariant infinitésimal des fonctions normales (C. R. Acad. Sci. Paris, vol. 307, Série I, 1988, p. 157-160). Zbl0673.14005MR90a:14007
  19. [19] C. VOISIN, Une approche infinitésimale du théoréme de H. Clemens sur les cycles d'une quintique générale de ℙ4 (J. Algebraic Geometry, vol. I, 1992, p. 157-174). Zbl0787.14003MR92k:14008
  20. [20] C. VOISIN, Densité du lieu de Noether-Lefschetz pour les sections hyperplanes des variétés de Calabi-Yau (International J. of Math. vol. 3, n° 5, 1992, p. 699-715). Zbl0772.14015MR93m:14034
  21. [21] J. STEENBRINK et S. ZÜCKER, Variation of Mixed Hodge Structure I (Invent. Math., vol. 80, p. 489-542). Zbl0626.14007MR87h:32050a

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.