Self-duality of Kähler surfaces

Mitsuhiro Itoh

Compositio Mathematica (1984)

  • Volume: 51, Issue: 2, page 265-273
  • ISSN: 0010-437X

How to cite

top

Itoh, Mitsuhiro. "Self-duality of Kähler surfaces." Compositio Mathematica 51.2 (1984): 265-273. <http://eudml.org/doc/89645>.

@article{Itoh1984,
author = {Itoh, Mitsuhiro},
journal = {Compositio Mathematica},
keywords = {Penrose twistor space construction; Kähler metric; Kähler surface; anti-self-dual; scalar curvature},
language = {eng},
number = {2},
pages = {265-273},
publisher = {Martinus Nijhoff Publishers},
title = {Self-duality of Kähler surfaces},
url = {http://eudml.org/doc/89645},
volume = {51},
year = {1984},
}

TY - JOUR
AU - Itoh, Mitsuhiro
TI - Self-duality of Kähler surfaces
JO - Compositio Mathematica
PY - 1984
PB - Martinus Nijhoff Publishers
VL - 51
IS - 2
SP - 265
EP - 273
LA - eng
KW - Penrose twistor space construction; Kähler metric; Kähler surface; anti-self-dual; scalar curvature
UR - http://eudml.org/doc/89645
ER -

References

top
  1. [1] M.F. Atiyah, N.J. Hitchin and I.M. Singer: Self-duality in four-dimensional Riemannian geometry. Proc. R. Soc. Lond. A.362 (1978) 425-461. Zbl0389.53011MR506229
  2. [2] J.P. Bourguignon: Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont d'Einstein. Invent. Math.63 (1981) 263-286. Zbl0456.53033MR610539
  3. [3] B.-Y. Chen: Some topological obstructions to Bochner-Kaehler metrics and their applications. Jour. Dif. Geom.13 (1978) 547-558. Zbl0354.53049MR570217
  4. [4] A. Derdzinski: Exemples de métriques de Kähler et d'Einstein auto-duales sur le plan complexe. In: Geometrie riemannienne en dimension 4. Seminaire Arthur Besse 1978/79, Cedic/Fernand Nathan, Paris (1981). Zbl0477.53025
  5. [5] A. Derdzinski: Self-dual Kähler manifolds and Einstein manifolds of dimension four. Comp. Math.49 (405-433) 1983. Zbl0527.53030MR707181
  6. [6] L.P. Eisenhart: Riemannian Geometry. Princeton (1964). Zbl0041.29403JFM52.0721.01
  7. [7] S. Helgason: Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press (1978). Zbl0451.53038MR514561
  8. [8] N.J. Hitchin: Kählerian twistor spaces. Proc. Lond. Math. Soc.43 (1981) 133-150. Zbl0474.14024MR623721
  9. [9] M. Itoh: On the moduli space of anti-self-dual Yang-Mills connections on Kähler surfaces. Publ. Res. Inst. Math. Sci.19 (1983) 15-32. Zbl0536.53065MR700938
  10. [10] S. Kobayashi and K. Nomizu: Foundations of differential geometry, II. Interscience Publishers (1969). Zbl0175.48504
  11. [11] K. Kodaira: On the structure of complex analysic surfaces, IV. Amer. J. Math.90 (1968) 1048-1066. Zbl0193.37702MR239114
  12. [12] K. Kodaira and J. Morrow: Complex Manifolds. Holt, Rinehart and Winston (1971). Zbl0325.32001MR302937
  13. [13] F. Tricerri and L. Vanhecke: Curvature tensors on almost Hermitian manifolds. Transact. A.M.S.267 (1981) 365-398. Zbl0484.53014MR626479
  14. [14] K. Yano and S. Bochner: Curvature and Betti numbers. Ann. Math. Studies32, Princeton (1953). Zbl0051.39402MR62505
  15. [15] S.-T. Yau: On the curvature of compact Hermitian manifolds. Invent. Math.25 (1974) 213-239. Zbl0299.53039MR382706
  16. [16] S.-T. Yau: Seminar on differential geometry. Ann. Math. Studies102, Princeton (1982). Zbl0479.53001MR645728

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.