Injectivity properties of liftings associated to weil representations

S. Rallis

Compositio Mathematica (1984)

  • Volume: 52, Issue: 2, page 139-169
  • ISSN: 0010-437X

How to cite

top

Rallis, S.. "Injectivity properties of liftings associated to weil representations." Compositio Mathematica 52.2 (1984): 139-169. <http://eudml.org/doc/89656>.

@article{Rallis1984,
author = {Rallis, S.},
journal = {Compositio Mathematica},
keywords = {Weil lifting; dual reductive pair; kernel function; Weil representation; Schwartz function; nondegenerate quadratic form; adelic space of cusp forms; orthogonal group; symplectic group; Langlands L-function; inner product formula; traces of Hecke operators; modular cusp forms; cuspidal automorphic representation; nonvanishing Lie algebra cohomology},
language = {eng},
number = {2},
pages = {139-169},
publisher = {Martinus Nijhoff Publishers},
title = {Injectivity properties of liftings associated to weil representations},
url = {http://eudml.org/doc/89656},
volume = {52},
year = {1984},
}

TY - JOUR
AU - Rallis, S.
TI - Injectivity properties of liftings associated to weil representations
JO - Compositio Mathematica
PY - 1984
PB - Martinus Nijhoff Publishers
VL - 52
IS - 2
SP - 139
EP - 169
LA - eng
KW - Weil lifting; dual reductive pair; kernel function; Weil representation; Schwartz function; nondegenerate quadratic form; adelic space of cusp forms; orthogonal group; symplectic group; Langlands L-function; inner product formula; traces of Hecke operators; modular cusp forms; cuspidal automorphic representation; nonvanishing Lie algebra cohomology
UR - http://eudml.org/doc/89656
ER -

References

top
  1. [A] Arthur, J.: Eisenstein series and the trace formula. Proc. of Symposia in Pure Math.33 (1979) 253-274. Zbl0431.22016MR546601
  2. [B] Borel, A.: Automorphic L-functions. Proc. of Symposia in Pure Math.33 (1979) 27-63 (part II). Zbl0412.10017MR546608
  3. [B-W] Borel and Wallach, N.: Continuous cohomology, discrete groups, and representations of reductive groups. Annals of Math Studies94 (1980). Zbl0443.22010
  4. [E] Eichler, M.: Quadratische Formen und orthogonale gruppen. Grundlehren der Mathematischen Wissenschaften63 (1974). Zbl0277.10017MR351996
  5. [H-M] Howe, R. and Moore, C.: Asymptotic properties of unitary representations. J. Func. Anal.32 (1979) 72-96. Zbl0404.22015MR533220
  6. [J-L] Jacquet, H. and Langlands, R.: Automorphic forms on GL(2). Lecture Notes in Math.114, Springer (1970). Zbl0236.12010MR401654
  7. [K-Z] Kohnen, W. and Zagier, D.: Values of L-series of modular forms in the middle of the critical strip. (1980) Preprint. Zbl0468.10015
  8. [L] Lang, S.: SL2(R). Addison-Wesley (1974). 
  9. [La] Langlands, R.: Base change for GL (2). Annals of Math Studies96 (1980). Zbl0444.22007MR574808
  10. [M-R] Millson, J. and Raghunathan, M.S.: Geometric construction of homology for arithmetic groups. Preprint. Zbl0524.22012
  11. [P] Piatetski-Shapiro: On the Saito-Kurokawa lifting. Preprint. Zbl0515.10024
  12. [R-1] Rallis, S.: Langlands' functoriality and the Weil representation. Amer. Jour. of Math.104 (3) (1982) 469-515. Zbl0532.22016MR658543
  13. [R-2] Rallis, S.: On the Howe duality conjecture. Comp. Math.51 (3) (1984) 333-399. Zbl0624.22011MR743016
  14. [R-3] Rallis, S.: The Eichler commutation relation and the continuous spectrum of the Weil representation. Proc of Conference on Non Commutative Harmonic Analysis. Lecture Notes in Math.728 (1979) 211-244. Zbl0482.10032MR548332
  15. [R-S] Rallis, S. and Schiffmann, G.: Weil representation. I. Interwining distributions and discrete spectrum. Memoirs of Amer. Math. Soc.231 (1980). Zbl0442.22006MR567800
  16. [W] Waldspurger, J.L.: Correspondance de Shimura. J. Math. pures et appl.59 (1980) 1-133. Zbl0412.10019MR577010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.